
Viewpoint: It’s Not Over Till the Joe Winchester

Fat Client Sings Java on the desktop 6

Load Balancing: Easing the Pain of Enterprise Jeff Browning

Application Deployment Increasing productivity is just the beginning 10

Feature: Zip Objects, Zap Wait Time Robert Beckett

Compress data – decrease your network traffic 20

Forum: Java Games Development Jason R. Briggs

Part 3 of 3 – Developing 3D games and more 34

Feature: The Location API Sven Haiges

Simplify access to mobile positioning methods 52

DelegatorFactory: Multiple Inheritance in Java Dan Haywood

Of diamonds and dynamic proxies 58

JSR Watch: From Within the Java Community Onno Kluyt

Process Program From ‘Tiger’ to portlets to MIDPs 64

From the Inside: One IDE to Rule Them All Henry Roswell

To capture mind share, Java needs a killer IDE 66
SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL DECEMBER 31, 2003

From the Editor

Java the Brand,

Not the Technology

Alan Williamson pg. 5

J2EE Insight

The Kids Are Alright

Joseph Ottinger pg. 8

J2SE Insight

I Love Logging!

Jason Bell pg. 32

J2ME Insight

Quality Is Job n?

Glen Cordrey pg. 50

Industry News

pg. 64

CAN JAVA RECAPTURE THE GUI PLATFORM? pg. 6

www.JavaDevelopersJournal.com

details on pg. 45

International Conference & Expo

Feb. 24–26, 2004
Boston, MA

Edge 2004
EAST
Edge 2004
EAST

2 October 2003 www.JavaDevelopersJournal.com

PPaarraassoofftt CCoorrppoorraattiioonn
www.parasoft.com/jdj10

© 2003 Zero G Software, Inc. Zero G, Zero G Software, and InstallAnywhere are trademarks or registered trademarks of Zero G Software, Inc. All other trademarks are property of their respective owners.

Why do industry leaders

choose Zero G?

Because, Zero G is the industry leader in multi-platform software deploy-

ment and updating. But, it didn't just happen overnight. Since 1996 we have

listened, adapted, and built our award-winning InstallAnywhere® and

PowerUpdate® products based on constant interaction with our customer-

partners,That’s why they have become the developers’deployment solution

of choice worldwide. It’s no wonder that industry leaders like Sun

Microsystems, Novell and Borland choose us.

Your software deployment partner

www.ZeroG.com

Maximized

© 2003 Computer Associates International, Inc. (CA). All rights reserved.

AllFusion™ Life Cycle Management Software

Monitored
The right approach to application life cycle management
can transform your business.

The key to great development isn’t just great developers, it’s great management. That’s why we created AllFusion, a comprehensive

application life cycle management solution. AllFusion has unprecedented flexibility that allows your projects to change along with

the market. And that helps you do something a lot more important than just minimize aggravation. It lets you maximize productivity.

To learn how to improve your development process, or to get a white paper, go to ca.com/lifecycle.

5October 2003www.JavaDevelopersJournal.com

International Advisory Board
CCaallvviinn AAuussttiinn (Sun)

JJaassoonn BBeellll (Independent)
JJaassoonn BBrriiggggss (Independent)

Jeerreemmyy GGeeeellaann (SYS-CON)
TThhoorrsstteenn LLaauuxx (Sun)
RRiicckkaarrdd ÖÖbbeerrgg (Independent)

JJooee OOttttiinnggeerr (Independent)
BBiillll RRootthh (E.piphany)

AAjjiitt SSaaggaarr (Independent)
EErriicc SSttaahhll (BEA)

JJoonn SStteevveennss (Apache)
AAaarroonn WWiilllliiaammss (JCP)

AAllaann WWiilllliiaammssoonn (SYS-CON)
JJooee WWiinncchheesstteerr (IBM)

BBllaaiirr WWyymmaann (IBM)

Editorial
Editor-in-Chief: AAllaann WWiilllliiaammssoonn

Executive Editor: NNaannccyy VVaalleennttiinnee
J2EE Editor: JJooee OOttttiinnggeerr

J2ME Editor: GGlleenn CCoorrddrreeyy
J2SE Editor: JJaassoonn BBeellll

Contributing Editor: JJaassoonn RR.. BBrriiggggss
Contributing Editor: AAjjiitt SSaaggaarr

Founding Editor: SSeeaann RRhhooddyy

Production
Production Consultant: JJiimm MMoorrggaann
Associate Art Director: LLoouuiiss FF.. CCuuffffaarrii

Associate Editors: JJaammiiee MMaattuussooww
GGaaiill SScchhuullttzz
JJeeaann CCaassssiiddyy
JJeennnniiffeerr VVaann WWiinncckkeell

Online Editor: LLiinn GGooeettzz
Technical Editor: BBaahhaaddiirr KKaarruuvv,, PPhhDD

Writers in This Issue
Robert Beckett, Jason Bell, Jason R. Briggs,
Jeff Browning, Glen Cordrey, Sven Haiges,
Dan Haywood, Rich Helton, Onno Kluyt,

Joseph Ottinger, Alan Williamson, Joe Winchester

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department subscribe@sys-con.com.
Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)

Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or
Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9600

Java Developer’s Journal (ISSN#1087-6944) is published monthly
(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2003 by SYS-CON Publications, Inc. All rights

reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechan-

ical, including photocopy or any information storage and
retrieval system, without written permission. For promotional

reprints, contact reprint coordinator Carrie Gebert, carrieg@sys-
con.com. SYS-CON Media and SYS-CON Publications, Inc.,

reserve the right to revise, republish and authorize its readers
to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

ike many of you, I keep an eye
on what Sun is doing as a
company. I keep an eye on
their press releases, official
statements, and general prod-

uct lines. I don’t necessarily pay a great
deal of attention to the output unless it
specifically mentions Java because, as
we know, there is more to Sun than just
Java.

I’ve known about their “Mad
Hatter” (Linux desktop) project for
some time now. It’s essentially a collec-
tion of open source projects, all
designed to work together in one desk-
top, running initially on Linux. This is
Sun’s continued play to become a sin-
gle-stop solutions company. As Scott
McNealy remarked at his Sun Network
03-Q3 keynote in San Francisco in
September: “We’re the IT company, not
you.”

However, at the Sun Network, Sun
announced it was renaming the project
the “Java Desktop System.” Excuse me?
The Java Desktop System? What’s that
all about? Deep within the bowels of
Sun, someone has decided that associ-
ating it with Java in a clear concise
marketing message will increase the
success of this project. Maybe it will,
maybe it won’t. But it’s one heck of a
gamble.

Leaving aside the fact that the
name is misleading since the “Desktop
System” has very little to do with Java, I
am prompted to ask why not call it the
“Star Office Desktop System” or the
“Mozilla Desktop System” – or even the
“Sun Desktop System”? When you say
“Java Desktop System,” I instantly
think of the ill-fated JavaStation
(remember the Java shark fin termi-
nals?). This was a Java desktop.
Everything running was Java. The only
native app you could run was a Java
class file. That’s how native it got.

As announced, the Java Desktop
System on the other hand is not a pure
Java platform. It’s not a single JVM con-
trolling the whole desktop. Java is
merely the recommended language;
Sun is encouraging us to write our

apps destined for that desktop in Java.
To call it the Java Desktop System is
being disingenuous.

I wish Sun lots of success with this,
but historically they aren’t renowned
for succeeding in the software world.
Sun ONE didn’t rock any boats, Forte
didn’t shake any trees, and we can only
hope that Project Rave is going to
come within at least a sniff of all the
marketing hype.

The issue is that the Java brand has
been hijacked for a project that has
very little to do with Java. The press are
already writing about how the Java
Desktop System is aimed to compete
with Microsoft Windows and how well
the one integrates with the other.

My fear for the wider Java commu-
nity of developers is this: If this fails to
knock Microsoft out of the desktop
space, guess what will be blamed by
the critics and the analysts? Not Sun,
but Java. Sun is playing a game of
Russian roulette with the prize china!
Naturally Sun legally owns the Java
brand, so you can argue that they can
do with it whatever they please. But
surely they have a duty of care to the
community, a responsibility to it. Yes
they own it, but aren’t they more a cus-
todian of Java?

If this blows up in Sun’s face, it
blows up in all our faces. Java is strug-
gling on the desktop as it is and only
now are we clawing back with a strong,
viable solution that can offer a serious
alternative (see Joe Winchester’s
Viewpoint on page 6). Surely we want
to avoid doing anything that is going to
set this momentum back.

We in the wider Java community
ought not to allow Sun to take risks like
this with “our” brand. We have too
much invested in Java for Sun to be
misusing the Java name without either
the Java community or Java having a
major play in it.

If the Java Desktop System fails, it
won’t be because of the Java compo-
nent. My question is: If this doesn’t
work out, how will we all be able to con-
vince the corporate world of that?

FROM THE EDITOR

Alan Williamson, when not
answering your e-mails and
working on the next issue of JDJ,
heads up a small team dubbed
the “Thunderbirds of the Java
industry,” providing on- and off-
site rescue for Java projects in
trouble. For more information
visit www.javaSOS.com.
You can also read his blog:
http://alan.blog-city.com.

alan@sys-con.com

Alan Williamson
Editor-in-Chief

J2SE
H

O
M

E
J2E

E
J2M

E

L

Java the Brand,
Not the Technology

eports of Java’s death on the desktop
may be somewhat premature. A recent
Giga group report, “Return of the Rich
Clients”, predicts that in the next three
years browser-rich clients will grow by
350%, stand-alone clients by 250%,
while HTML will decline by 50%. Two
major facts are contributing to this
change: problems associated with tra-
ditional client development being
solved and HTML not providing a pow-
erful enough user interface for all GUI
requirements. Both of these are good
news for Java.

For stand-alone clients, Java has
advanced on several fronts recently.
The J2SE team delivered substantial
performance improvements to Swing
in 1.4.2, as well as a great Windows XP
and GTK look and feel. Meanwhile the
Eclipse project created SWT that uses a
rich set of cross-platform native con-
trols over and above those provided by
AWT. Newsgroup flame wars often
pitch the two as rival GUI toolkits;
however, hopefully this will become a
thing of the past as the current inter-
operability problems are tackled.

One of the problems associated
with traditional client/server develop-
ment is a systems management issue
of how to ensure that the software at
all end points is kept up-to-date.
HTML largely avoids this by creating
the page marking up the client UI
each time a request is made to the
Web server. Arguably, this on-demand
preparation of the GUI is the single
largest reason HTML has become
such a ubiquitous programming
model. Java Web Start, however, solves
the original distribution problem by
using the Web as a mechanism to
deliver a traditional Java application
to the client. Each time the program is
run it checks against the Web server to
see whether a newer version is avail-
able and, if required, downloads the
updated JAR files. JWS programs run
within Java’s security model; however,
client-side caching and the use of
local JRE avoid the issues that plagued
applets.

Several Java hybrid clients also exist
that run Java on the server, but instead
of delivering HTML to the browser,
they use plug-ins to create a richer UI
experience. With the ultra-lightweight
client from Canoo, a J2EE programmer
uses Swing peer classes as if writing
client-side Java, requests are marshaled
back and forth as XML, and a full Swing
GUI is actually created on the client.
The RSWT SourceForge project does
the same except it uses SWT as its Java
toolkit. Other examples of Java hybrid
technologies are classic blend, droplets,
and thinlets, all of which deliver a rich
GUI to the user through a Java server-
side programming model.

It’s not going to be easy for Java to
win back the client as it faces stiff com-
petition from Microsoft with Windows
Forms, and Visual Basic as the incum-
bent client development language.

With this level of activity in the
client Java space, Java Developer’s
Journal is launching a new section enti-
tled “Desktop Java.” This will include
solid technical content to help you
understand more about the various
projects and technologies, as well as
editorials and news. The mistakes have
been made, the lessons learned, and
Java is now well positioned to recapture
some of its lost pride as a GUI platform.
We hope you enjoy the new section.

References
1. “Return of the Rich Clients” report

available to registered Giga cus-
tomers: www.gigaweb.com

2. SWT/Swing: www.cbronline.com
/currentnews/b096965887
e6c9a380256d940018c964

3. Java Web Start:
http://java.sun.com/j2se/1.4.2/docs
/guide/jws/developersguide/con-
tents.html

4. ULC: www.canoo.com/ulc
5. RSWT: http://rswt.sourceforge.net
6. Classic blend: www.appliedreason-

ing.com/products_what_is_Classic_
Blend.htm

7. Droplets: www.droplets.com
8. Thinlets: www.thinlet.com

It’s Not Over Till
the Fat Client Sings Joe Winchester

R

VIEWPOINT

6 October 2003 www.JavaDevelopersJournal.com

President and CEO:
FFuuaatt KKiirrccaaaallii fuat@sys-con.com

Vice President, Business Development:
GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Group Publisher:
JJeerreemmyy GGeeeellaann jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

CCaarrmmeenn GGoonnzzaalleezz carmen@sys-con.com
Vice President, Sales and Marketing:
MMiilleess SSiillvveerrmmaann miles@sys-con.com

Advertising Sales Director:
RRoobbyynn FFoorrmmaa roybn@sys-con.com

Director, Sales and Marketing:
MMeeggaann RRiinngg megan@sys-con.com
Advertising Sales Manager:

AAlliissaa CCaattaallaannoo alisa@sys-con.com
Associate Sales Managers:

CCaarrrriiee GGeebbeerrtt carrieg@sys-con.com
KKrriissttiinn KKuuhhnnllee kristen@sys-con.com

Editorial
Executive Editor:

NNaannccyy VVaalleennttiinnee nancy@sys-con.com
Associate Editors:

JJaammiiee MMaattuussooww jamie@sys-con.com
GGaaiill SScchhuullttzz gail@sys-con.com
JJeeaann CCaassssiiddyy jean@sys-con.com

JJeennnniiffeerr VVaann WWiinncckkeell jennifer@sys-con.com
Online Editor:

LLiinn GGooeettzz lin@sys-con.com

Production
Production Consultant:

JJiimm MMoorrggaann jim@sys-con.com
Lead Designer:

LLoouuiiss FF.. CCuuffffaarrii louis@sys-con.com
Art Director:

AAlleexx BBootteerroo alex@sys-con.com
Associate Art Director:

RRiicchhaarrdd SSiillvveerrbbeerrgg richards@sys-con.com
Assistant Art Director:

TTaammii BBeeaattttyy tami@sys-con.com

Web Services
Vice President, Information Systems:
RRoobbeerrtt DDiiaammoonndd robert@sys-con.com

Web Designers:
SStteepphheenn KKiillmmuurrrraayy stephen@sys-con.com
CChhrriissttoopphheerr CCrrooccee chris@sys-con.com

Accounting
Accounts Receivable:

KKeerrrrii VVoonn AAcchheenn kerri@sys-con.com
Financial Analyst:

JJooaann LLaaRRoossee joan@sys-con.com
Accounts Payable:

BBeettttyy WWhhiittee betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

GGrriisshhaa DDaavviiddaa grisha@sys-con.com
Conference Manager:

MMiicchhaaeell LLyynncchh michael@sys-con.com
National Sales Manager:

SSeeaann RRaammaann raman@sys-con.com

Customer Relations
Circulation Service Coordinators:

NNiikkii PPaannaaggooppoouullooss niki@sys-con.com
SShheelliiaa DDiicckkeerrssoonn shelia@sys-con.com

EEddnnaa EEaarrllee RRuusssseellll edna@sys-con.com
JDJ Store Manager:

RRaacchheell MMccGGoouurraann rachel@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Joe Winchester
is a software developer working

on WebSphere development
tools for IBM in Hursley, UK.

winchest@uk.ibm.com

C
o

p
y

ri
g

h
t

©
 2

0
0

2
 C

a
n

o
o

 E
n

g
in

e
e

ri
n

g
 A

G
.

A
ll

 R
ig

h
ts

 R
e

se
rv

e
d

.
Ja

va
 a

n
d

 a
ll

 J
a

va
-b

a
se

d
 t

ra
d

e
m

a
rk

s
a

re
 r

e
g

is
te

re
d

 t
ra

d
e

m
a

rk
s

o
f

S
u

n
 M

ic
ro

sy
st

e
m

s,
 I

n
c.

Java thin clients
made easy

N
EW

!

Release 5.1

out now
!

Ultra Light Client

with full GUI capability

e a s y d e v e l o p m e n t

■ no worries about client-server code split

■ no technology mix: pure server-side Java development

■ widgets transparently split between client and server

■ extensible Swing-based widget set incl. source code

e a s y d e p l o y m e n t a n d o p e r a t i o n

■ application deployment on server only

■ lean and generic display engine on client

■ optimized for low-bandwidth communication

■ seamless J2EE integration (Web/EJB container)

■ Web integration (applet, Java Web Start)

Canoo Engineering AG Tel +41 61 228 94 44

Kirschgartenstrasse 7 Fax +41 61 228 94 49

CH-4051 Basel http://www.canoo.com/ulc/

Switzerland ulc-info@canoo.com

D o w n l o a d y o u r f r e e t r i a l t o d a y !

8 October 2003 www.JavaDevelopersJournal.com

very month we’re told again and again
how Java is on its way out. A multibil-
lion-dollar company tells us that, while
hiring other large companies to say the
same thing. One sad group of souls
says it’s because of Java’s licensing, or
the lack of features available in other
languages or frameworks, and another
wails that Java’s too flexible, while
another set says that Java’s too slow.

It ain’t so.
The oddest thing about all this, to

me, is that Java is one of the best lan-
guages around, and all the yammering
about it is an indication of its health.
You don’t eulogize for very long; you
only discuss healing while the patient’s
still alive, while there’s hope. Microsoft
doesn’t bother advertising how much
better Windows is than XENIX or OS/9
or OS/2 – those are battles it’s won.
Instead, Microsoft reserves its fire for
Linux and, dare I say it, Java.

There are a lot of obstacles in front
of Java developers today. Most of them
are philosophical in nature, and can be
fixed by a little bit of logical thought
and education; I find that in my own
sphere of expertise, developers tend to
be unaware of many critical aspects of
J2EE programming, mistaking some of
the component specifications as being
representative of the entire J2EE spec-
trum (which I’m guilty of myself!), or
simply riding on the assumptions
offered to them by other similarly inex-
perienced coders. Some of the obsta-
cles are simply based on outdated
information (such as the “Java is slow”
myth); others are based on advertising.
Some of the issues are bullet-point
related (such as the “Java needs tem-
plates” discussions), and even more
are based on simple defeatism.

All this is fine, really. I don’t mind
that these issues and others even exist,
because we’re aware of them. Sun Tzu,
in “The Art of War,” said that you

should know your enemy; these are
our enemies. There are those who pick
on this column and various Web sites
for being negative when Java doesn’t
need it – they want positive analyses
and happy success stories only; I think
these Pollyannas need to wake up and
smell the Java! You can’t solve a prob-
lem you don’t know about, and while I
try to be constructive in nature, even
those who are less constructive serve a
very valuable purpose: they show you
things that need to be improved. Even
if the things they say are wrong, their
data had to come from somewhere –
perhaps that’s an opportunity to
improve the documentation or educa-
tion process.

In fact, I’d go so far as to say that I
distrust a purely glowing review. I’ve
been really happy with a few products,
to the point where I’m happy to agree
that their warts are very minor –
Borland’s Optimizeit ServerTrace is one
of these products. That doesn’t mean
the warts aren’t there or can’t be
improved, and I offer feedback in an
attempt to make every product every-
thing it can be.

Java’s no exception. In my last edi-
torial, I asked where the components
were (Vol. 8, issue 9), and I’m glad to
say there were a number of vendors
and programmers offering answers.
I’ve been willing to critique Sun’s
management of Java along with many
others, and here’s the thing that
shows Java’s health: those critiques
have been acknowledged and
answered!

Sometimes the answer isn’t what
we want to hear, but the fact is that lit-
tle of this truly falls on deaf ears.

Java’s alright, and unless things
drastically change, the continued
growth of Java will go on, unstemmed.
It’s still fun, still useful, still worthwhile
– and will be for a long, long time.

E

J2EE INSIGHT

The Kids Are Alright
Every month we’re

told again and again how Java is
on its way out. A multibillion-dol-

lar company tells us that, while
hiring other large companies to

say the same thing. One sad
group of souls says it’s because

of Java’s licensing, or the lack of
features available in other lan-

guages or frameworks, and
another wails that Java’s too

flexible, while another set says
that Java’s too slow. It ain’t so.

Easing the Pain of
Enterprise Application

Deployment
To provide the best

application performance, reliabil-
ity, scalability, and security for
J2EE applications, many large
organizations utilize network

load-balancing appliances and
application switches. However,

coordinating the deployment of
applications between application

developers and network man-
agers can be a slow, painstaking

process. An opportunity now
exists to help automate the

process of deploying and updat-
ing Java applications to save

development time, ease frustra-
tions of deployment, and more.

Joseph Ottinger is a consultant
with Fusion Alliance

(www.fusionalliance.com) and is
a frequent contributor to open
source projects in a number of

capacities. Joe is also the acting
chairman of the JDJ Editorial

Advisory Board.

josephottinger@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

8

10

Joseph Ottinger
J2EE Editor

20
Zip
Objects,
Zap Wait
Time

The Kids Are Alright

More little black lines than ever before.

*new or updated features with Crystal Reports 9 Advanced

Java, .NET, and COM SDKs –
Integrate reporting/presentation
layers with virtually any application.

Report Designer –
Create highly formatted reports
without any programming.

*Unlimited SQL Control –
Deliver complete control
over database connectivity.

Training and Technical Support –
Get fast, maximum results with

online or onsite training, and a full
range of technical support options.

*Report Parts –
Specify existing key report elements,

Report Parts, for dynamic access
via wireless or web applications.

*Data Access –
Access almost any data with native,

ODBC, OLE DB connectivity to relational,
OLAP, XML, and enterprise data sources.

*Custom Report Style Templates –
Create and apply a consistent look
and feel across multiple reports.

Exports –
Export in multiple formats: XML, PDF,
DHTML, Excel, Word, RTF, text, and email.

Customizable report viewers –
Use multiple viewer controls including:
Java, .NET, DHTML, and ActiveX®.

*Web Deployment –
Implement dynamic web reporting, including

queuing and caching of user requests for
efficient management of user loads.

Extensible Formula Workshop –
Select from over 300 included

functions and operators.

Advanced Parameters –
Deliver dynamic reports with pre-defined

parameters for unique data views at runtime.

*Crystal Repository –
Store, manage, and reuse
report objects.

Online Developer Zone –
Use extensive online samples and
resources to reduce development cycles,
coding, and learning curves.

With over 50 new features inside Crystal Reports 9, it’s impossible to list all the
finer points of our high-productivity reporting solution.

More features. More productivity. More flexibility.

Allowing detailed control of end user report viewing and runtime interaction,
Crystal Reports is an ideal solution for developers seeking efficient integration
of dynamic application reporting and presentation layers using Java, .NET,
and COM.

Crystal Reports is also a fundamental component of Crystal Enterprise,
a web-based information delivery system. This reliable, scalable, and
secure technology is an excellent starting point for application developers
who need a platform that can grow.

With over 14 million licenses shipped, and chosen by
industry-leading technology partners like Microsoft and
SAP for its high-productivity solutions, Crystal Decisions
is a trusted software vendor.

Find out more. Visit our web site for free online seminars,
the Developer Zone, demos, and evaluation software at:
www.crystaldecisions.com/lbl/.

To buy now, call 1-800-877-2340, visit our online store at
www.crystaldecisions.com/lbl/estore/, or contact your reseller.

© 2003 Crystal Decisions, Inc. All rights reserved. Crystal Decisions, Crystal Reports, Crystal Enterprise,
and the Crystal Decisions logo are either a trademark or registered trademark of Crystal Decisions, Inc.
in the U.S and/or other countries. All other trademarks or registered trademarks referenced are the
property of their respective owners.

10 October 2003 www.JavaDevelopersJournal.com

o provide the best application perform-
ance, reliability, scalability, and security
for J2EE applications, many large
organizations utilize network load-bal-
ancing appliances and application
switches. However, coordinating the
deployment of applications between
application developers and network
managers can be a slow, painstaking
process for companies choosing the
many advantages of the network-
based, load-balancing switches.

By developing an application to
manage the time-consuming coordina-
tion between these two teams, develop-
ers can self-serve their needs more
quickly, network managers can save
valuable time previously spent per-
forming manual tasks, and companies
can experience more flexible applica-
tion deployment and updates.

Budget-conscious IT departments
can also save enormous amounts of
scarce financial resources and time. On
a network basis alone, conservative
estimates show that companies can
save nearly $20,000 per network engi-
neer per year in time spent managing
this process by building a very basic
application deployment-and-update
application. At the same time, the
client experience is improved through
better orchestrated application deploy-
ment.

Summarily, an opportunity now
exists to help automate the process of
deploying and updating Java applica-
tions in order to save development
time, ease frustrations of deployment,
and gain flexibility to deploy new appli-
cations on demand while offering the
best client experience.

The Current State of
Enterprise Applications

It should come as little surprise to
developers that as Web applications
have flourished, so have demands on

the application servers required to
deliver them. The days of deploying an
application to one server and hoping it
delivers performance and reliability are
a thing of the past.

As a result, applications are typically
deployed in a redundant fashion across
multiple identical application servers.
This ensures that the application is
available when requested, even if one
application server is out of service or
experiencing technical difficulties.
Traditional “load-balancing” solutions
help virtualize a specific application IP
address so that when people access a
URL or IP address, the load balancer
determines which redundant server is
best suited to accept and respond to
the application request.

The advantages of load balancing
are significant. Most serious Web sites
and e-business applications today
employ some form of load balancing
because it ensures a predictable client
experience. Load-balancing solutions
also help increase application perform-
ance by distributing requests to the
best performing servers. In some cases,
they can deliver more cost-effective
applications due to lower server license
costs and server expenditures.

When it comes to application relia-
bility and load-balancing options,
companies usually consider two alter-
natives for increasing the reliability
and performance of their applications.
One choice is software load balancing,
which is included as a feature with
most Java application servers. In this
scenario, application servers help dis-
tribute load by utilizing some form of
clustering or “round robin” load bal-
ancing. While this capability is usually
included in the price of application
servers, it comes at a cost to server
performance. In many cases, software
load balancing can inflict a 20–40%
performance hit to each application

server running the load-balancing soft-
ware.

Alternatively, companies choose
hardware solutions that help provide
load balancing and more intelligent IP
traffic management to realize signifi-
cant advantages while complementing
their existing software clustering. A
key advantage to this is extremely high
reliability (99.999% or less than 5.3
minutes of downtime per year). For
applications utilizing HTTPS for secu-
rity, these devices can also offer per-
formance optimization such as hard-
ware-based SSL processing and accel-
eration. These devices can also pro-
vide more intelligent balancing
schemes for complex applications
using persistence. In the event a server
goes down, the user session can typi-
cally be routed to the next available
server for seamless, transparent appli-
cation continuity.

While network devices provide
advantages for high availability, relia-
bility, and performance perspective,
there’s an added benefit for application
developers and network staff who are
responsible for deploying and updating
applications: these devices provide an
ideal control point to help orchestrate
application updates and deployment at
the ingress and egress point of all appli-
cation requests.

Application Deployment and Update
Challenges in the Enterprise

Deploying or updating application
components is a topic of pain and frus-
tration for many companies. While they
desire the high availability, reliability,
performance, and security that the
combination of network load balancers
and application servers provides,
orchestrating application deployment
requires collaboration between the
application and network teams.

Updates require access to servers to

Easing the Pain of Enterprise
Application Deployment
Increasing productivity is just the beginning

T

J2
SE

H
O

M
E

J2
E

E
J2

M
E

LOAD BALANCING

Jeff Browning

11October 2003www.JavaDevelopersJournal.com

BBoorrllaanndd SSooffttwwaarree
CCoorrppoorraattiioonn
go.borland.com/j6

12 October 2003 www.JavaDevelopersJournal.com

perform application updates and
enhancements on a regular basis and
usually require manual intervention by
network administrators. Typically, this
process requires application teams to
request manual assistance from the
network team to stop servers for
updates and then restart them when
updates are completed.

This approach has proven to be a
burden for both the network and appli-
cation teams. It takes longer to com-
plete updates. There is an increased
chance of human error and deploying
new applications takes too long. To fur-
ther complicate these matters, update
times must be scheduled during peri-
ods experiencing the least amount of
application traffic – commonly 2:00
a.m. on a Saturday morning. In almost
all cases, the manual network proce-
dures can be automated to shorten
application development life cycles,
enhance developer productivity, and
roll out applications instantly for the
best client experience.

A contributing factor to this chal-
lenge is the limited information provid-
ed by the J2EE specification. The J2EE
spec, which vendors rely upon to build
application servers and developer tools,
provides guidance for installation and
configuration. But it neglects to address
execution, which is left to the product
provider’s platform. While many appli-
cation server vendors have developed
their own update and deployment
capabilities, they are usually propri-
etary in nature. When combined with
network devices in true enterprise envi-
ronments, the combination of limited
specifications and vendor-specific solu-
tions can further complicate matters.

Finding the Solution
An opportunity exists to build intel-

ligent applications that bridge the gap
between the J2EE applications, servers,
and the network that supports them.

When considering application
development options, the two most
likely approaches include SNMP and
Web services based on SOAP/XML.
While both offer the ability to help
automate functions necessary for
deploying and updating applications,
SNMP has inherent security issues. For
instance, the only access control avail-
able for SNMP is the ability to restrict
access on IP addresses and alter the
public string. Further, communications
are done via clear text, which can
enable other applications to spoof
addresses and requests. Finally, SNMP
requires developers to learn specialized

MIB vocabularies to develop applica-
tions.

To me, Web services via SOAP/XML
appears to be a much more viable
option. Based on widespread industry
support, it offers rapid development
with many different development envi-
ronments and enables the use of virtu-
ally any language to fit developer
needs. Therefore, I’ll utilize SOAP for
the following application example.

Application Overview
An application can be created

quickly to help automate the update
process. Applications can be full-fea-
tured, Web-client solutions that enable
developers to log in and control which
servers or applications they wish to
update. Or, this same functionality can
be combined with existing code man-
agement solutions to streamline the
deployment process.

For this example, I’ll outline the
basic building blocks that can work for
either scenario. To gracefully update
application components, the update
application must locate the server
resources supporting an application,
determine which servers need to be
updated, gracefully remove existing
traffic and connections to the server
hosting the application, and enable the
update process to begin. After the
application components are updated,
initialized, and tested, the application
must also gracefully reintroduce the
new applications to client requests.

Key Terms and Definitions
While network load-balancing tech-

nologies are not new, some of the terms
and function definitions may not be
familiar to application developers.
Since these terms relate to the inter-
faces and methods I will be discussing
in this example, here are some basic
definitions of terms common to net-
work devices:
• Node: A specific combination of an

IP address and port (service) number
associated with a server in the array
that is managed by a network load
balancer.

• Pool: Composed of a group of net-
work devices (called members). The
network load balancer distributes
requests to the nodes within a pool
based on the load-balancing method
and persistence method you choose
when you create the pool or edit its
properties.

• Member: A reference to a node when
it’s included in a particular pool.
Pools typically include multiple

member nodes.
• Virtual server: A specific combina-

tion of a virtual address and a virtual
port associated with an application
or Web service managed by a net-
work load balancer or other type of
host server.

• Connection: An active TCP connec-
tion to a specific server.

Application Description and Code Samples
For this example, the functions are

relatively generic and represent logical
steps needed to deploy or update appli-
cation components on servers man-
aged by a network load-balancing
device. The code samples, designed to
provide guidance on how to build your
own application, are specific to F5’s
iControl API. Directions for how to
learn more about this API and obtain
more samples are provided at the end
of this article. For other networking
vendors, you can visit their respective
Web sites for additional information on
how to use the APIs they make avail-
able to developers.

Query for Pool Associated with Virtual
Server Address

To locate the pool of nodes or mem-
bers associated with a virtual server,
query the virtual server address (see
Listing 1). The response will indicate
which pool(s) are available to manipu-
late. In many cases, the virtual server is
the primary URL or IP address associat-
ed with a particular Web service or
application.

Query Pool for Members
To determine which members

(servers) are available for application
updates, query the pool associated with
the virtual server (see Listing 2). From
the response, you’ll have a listing from
which to choose. This will be the total
collection of servers that you will have
access to when deploying new applica-
tions or updating existing applications.

Determine How Many or
Which Member(s) to Target

In many cases, this is a business-
process decision. The number or quan-
tity of members you will want to target
for updates comes down to a simple
question: How many servers can you
afford to take out of service at any
given time? Your decision may be based
on a number of factors including cur-
rent server load, server resources provi-
sioned for various peak times, or possi-
bly something as elegant as calculating
the average number of persistent appli-

LOAD BALANCING
J2

SE
H

O
M

E
J2

E
E

J2
M

E

You need to get more out of what you have. We have just the thing: solutions based on our open

technology platform, SAP NetWeaver™. Because it’s preconfigured to work with your current IT investments – and

it’s fully operable with .NET, J2EE and IBM WebSphere – SAP NetWeaver reduces the need for custom integration.

That lowers your total cost of ownership for your entire IT landscape and gets you quicker ROI. Everything

a CIO wants (and a CFO didn’t think was possible). Visit sap.com/netweaver or call 800 880 1727 for details.

FINALLY, BUSINESS
SOLUTIONS THAT
WORK WITH EXISTING
TECHNOLOGIES
AND NONEXISTENT
BUDGETS.

© 2003 SAP AG. SAP and the SAP logo are trademarks and registered trademarks of SAP AG in Germany and several other countries. Other product or service names mentioned herein are the trademarks of their respective owners.

14 October 2003 www.JavaDevelopersJournal.com

IInnffrraaggiissttiiccss,, IInncc..
www.infragistics.com

15October 2003www.JavaDevelopersJournal.com

IInnffrraaggiissttiiccss,, IInncc..
www.infragistics.com

16 October 2003 www.JavaDevelopersJournal.com

cation connections.
One option, although not defined in

the article, could include the creation
of server groups to be utilized as
“update groups.” These could then
enable switching between groups when
updates are executed (see Listing 3).

Set State to Disable Targeted Members
Once the targeted members

(servers) have been identified, the next
step is to proceed with setting the state
of the members you wish to update.
This step effectively prepares the
servers by ensuring that no new client
connections can be established.
Further, it ensures that no new traffic is
sent to the servers. Once this state is
set, new connections and traffic will be
sent to other members in the pool,
ensuring that new requests always get
an active server and not a server going
through the update process.

void setNodeState(IPPortDefinition[] mem-

bers, int state) {

...

// Setting method parameters

soapParams.addElement(new

Parameter("node_defs",

IPPortDefinition[].class, members,

null));

soapParams.addElement(new

Parameter("state", Integer.class,

state, null));

// Set Call object method and parameters

call.setMethodName("set_state");

...

}

Establish When to Drop All Connections
from a Member

Once the state has been set to dis-
able targeted members, the decision
must ultimately be made as to when all
remaining connections will be dis-
abled. There’s a variety of criteria from
which to choose depending on your
business needs. A good approach can
include determining the threshold of
the tolerable number of connections to
drop. For example, once only two con-
nections remain, drop them and dis-
able. Another alternative is using the
time since the member was disabled. A
further option could include looking
for connections from specific client IP
addresses. When these connections
cease, disable the server.

Once the member is disabled and
all connections are dropped, it’s con-
sidered offline and ready for updates.

void setNodeAvailability(IPPortDefinition[]

members, int avail) {

...

// Setting method parameters

soapParams.addElement(new

Parameter("node_defs",

IPPortDefinition[].class, members,

null));

soapParams.addElement(new

Parameter("state", Integer.class,

avail, null));

// Set Call object method and parameters

call.setMethodName("set_availability");

...

}

Update Application Components on the
Target Server

At this point, the developer has
many choices as to the best way to dis-
tribute the application. Most simply
use existing component distribution
techniques that can include FTP, pro-
grammatic deployment, or even inte-
gration with an existing code manage-
ment system.

Once the update process has been
completed, appropriate steps should be
taken to initialize or register new com-
ponents on the server. It’s further rec-
ommended that new component test-
ing be performed prior to restoring the
member to an active pool.

Update Application Monitor
One feature usually deployed with

intelligent network load-balancing
solutions is application health check-
ing. Monitors check application avail-
ability at periodic intervals based on
specified criteria. This ensures that if
an application goes down, no new
client requests are routed in its direc-
tion.

If an application monitor needs to
be created or has been in use for previ-
ous versions, now is the time to create
the new monitor. Once created, it is
associated with the newly updated
member and the old monitor is deleted
(see Listing 4).

Set Updated Member to Receive Connections
Now that application updates are

completed, the server tests out correct-
ly, and the monitor is set, the member
is ready to be reintroduced to the pool
of servers supporting an application.
The member state needs to be set to
receive connections and placed in an
enabled mode.

void setNodeAvailability(IPPortDefinition[]

members, int avail) {

...

// Setting method parameters

soapParams.addElement(new

Parameter("node_defs",

IPPortDefinition[].class, members,

null));

soapParams.addElement(new

Parameter("state", Integer.class,

avail, null));

// Set Call object method and parameters

call.setMethodName("set_availability");

...

}

Set State to Allow New Traffic
Once enabled, the member is rein-

troduced to the pool and can begin
allowing new client requests that will
respond with the new application just
deployed.

void setNodeState(IPPortDefinition[] mem-

bers, int state) {

...

// Setting method parameters

soapParams.addElement(new

Parameter("node_defs",

IPPortDefinition[].class, members,

null));

soapParams.addElement(new

Parameter("state", Integer.class,

state, null));

// Set Call object method and parameters

call.setMethodName("set_state");

...

}

Putting It All Together
At this point, there are a variety of

options for how a member should be
reintroduced to the incoming flow of
requests. In most cases, how it is rein-
troduced depends on factors based on
overall methodology and the process
outlined for spot or rolling updates.

For instance, an organization may
want to schedule regular updates when
applications or sites have specific avail-
ability requirements. Alternatively, this
application could enable an organiza-
tion to update applications at any time,
given that now there’s control of how
the application is deployed, such that
clients will continue to have seamless
application access throughout the
process.

One deciding factor may include
whether the application is a basic
application or a more complex applica-
tion using session persistence. For
basic applications, an application
based on the building blocks provided
may stage blocks for updates. For
example, in a pool of six servers, the
first three may be updated and upon
being reintroduced into the pool, the
remaining three are removed to follow
the same update process.

LOAD BALANCING
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Take a tour of PerformaSure today:

http://java.quest.com/performasure/jdj

Diagnose and resolve J2EE performance problems
…now in production

© 2003 Quest Software, Inc. Quest, Sitraka, PerformaSure and JProbe are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. All other products are trademarks or registered trademarks of their respective companies.

PerformaSure™

Now you can take advantage of PerformaSure’s

exclusive Tag and Follow technology to diagnose and

resolve J2EE performance problems in production. Tag and

Follow traces and reconstructs live end-user transactions across the

JVMs, web/application servers and databases of your distributed J2EE

system. Get to root cause with PerformaSure.

PerformaSure’s new features reduce overhead to rock-bottom levels:

• Ultra low-overhead production-grade agents

• Component-level instrumentation and detail dial

• Automatic sampling and filtering, and more

18 October 2003 www.JavaDevelopersJournal.com

For applications where persistence
is a factor – particularly long persistent
sessions – a deployment strategy might
include creating a new pool for the
updated servers, adding the servers to
that pool, and then remotely telling the
network device to begin directing new
client requests to the newly formed
pool of updated servers. The benefit to
this approach is that all remaining per-
sistent sessions running on servers
using the old application version can
time out in their own graceful manner.
This helps ensure that client experi-
ences go smoothly. Only after the ses-
sion is complete will the servers be
cycled through the update process.

Application Benefits
By deploying this solution to ease

application deployments and updates
in a J2EE environment, companies are
able to increase developer productivity,
reduce deployment frustration, reduce
management overhead, and gain flexi-
bility to deploy new applications on
demand. With this solution, the cus-
tomer can:
• Reduce time spent managing the

deployment of applications: Some
customers have reported savings of
3–5 hours per week per network
administrator. Given only four net-
work administrators saving six hours
per week, this could equate to a sav-
ings of 144 workdays/year. Given the
cost of network management, this
can relate to significant cost savings
for any organization.

• Accelerate deployment of applica-
tions through automation: Replacing
manual processes with automation
enables faster updates and deploy-
ments and thus increases the devel-
oper time available to continually
improve applications. Further, it pro-
vides end users with access to more
current applications – increasing
their net productivity.

• Reduce errors associated with man-
ual intervention: Some estimates
suggest that nearly 80% of network
configuration errors can be attri-
buted to manual, human interven-
tion. By automating this process,
you can reduce a significant volume
of configuration problems that limit
mission-critical application avail-
ability.

Related Information
For additional information and

sample code to build similar applica-
tions, please visit http://devcentral
.f5.com.

LOAD BALANCING
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Jeff Browning is a prod-
uct manager for

Seattle-based F5, a
provider of secure

application traffic man-
agement products.

j.browning@f5.com

Listing 1

String getPoolName(String addr, long port) {

Response resp;
Vector soapParams = new Vector();
IPPortDefinition vs = new IPPortDefinition();
vs.setAddress(addr);
vs.setPort(port);

// Setting method parameters
soapParams.addElement(new Parameter("virtual_server",

IPPortDefinition.class, vs, null));

// Set Call object method and parameters
call.setMethodName("get_pool");
call.setParams(soapParams);

// Set Object URI and method name
call.setTargetObjectURI(urnVS);
// invokng SOAP method call
resp = call.invoke(destURI,urnVS);

// Checking response for status of service request
if (resp.generatedFault()) {

// Request failed, retreiving SOAP fault object
Fault fault = resp.getFault();
System.out.println("Fail to process set_state operation");
System.out.println("Fault Code: " + fault.getFaultCode() +

" Fault String: " + fault.getFaultString());
} else {

poolName = (String)resp.getReturnValue().getValue();
}
return poolName;

}

Listing 2

IPPortDefinition[] getMemberList(String poolName) {

Response resp;
Vector soapParams = new Vector();
IPPortDefinition[] nodes = new IPPortDefinition[1];
// Setting method parameters
soapParams.addElement(new Parameter("pool_name", String.class,

poolName, null));

// Set Call object method and parameters
call.setMethodName("get_member_list");

...
nodes = (IPPortDefinition[])resp.getReturnValue().getValue();
return nodes;

}

Listing 3

long getCurrentConnections(String nodeAddr, long nodePort) {
...

node.setAddress(nodeAddr);
node.setPort(nodePort);
soapParams.addElement(new Parameter("node_def",

IPPortDefinition.class, node, null));

call.setMethodName("get_statistics");
...

NodeStatistics stats =
(NodeStatistics)resp.getReturnValue().getValue();

currentConnections =
stats.getConnection_stats().getCurrent_connections();

}

Listing 4

void createMonitorTemplate(String name, String template,
int type, long timeout, long interval) {

...
MonitorIPPort monIPP = new MonitorIPPort();
monIPP.setIpport(member);
monIPP.setAddress_type(type);

CommonAttributes comAttr = new CommonAttributes();
comAttr.setTimeout(timeout);
comAttr.setInterval(interval);
comAttr.setDest_ipport(monIPP);
comAttr.setParent_template(template);

// Setting method parameters
soapParams.addElement(new Parameter("template_name",

String.class, tempName, null));
soapParams.addElement(new Parameter("template_type",

Integer.class, tempType, null));
soapParams.addElement(new Parameter("template_attributes",

CommonAttributes.class, comAttr, null));

// Set Call object method and parameters
call.setMethodName("create_template");

...
}

void createNodeAssoc(String[] tempNames, String node, long port) {
...

MonitorIPPort mon = new MonitorIPPort();
mon.setIpport(member);
mon.setAddress_type(type);

MonitorAssociation monAssoc = new MonitorAssociation();
monAssoc.setNode_definition(mon);
monAssoc.setTemplate_names(tempNames);

// Setting method parameters
soapParams.addElement(new Parameter("monitor_association",

MonitorAssociation.class, monAssoc, null));

call.setMethodName("create_association");
...

}

20 October 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

s the capabilities of our distributed applications increased, so
did our consumption of bandwidth. In 1998, our server sent
objects no larger than 50K to a group of users on a local net-
work. By 2002, we were passing an average of 500K per
object, with some as large as 1.5MB.

More important, the distribution of our user base grew
from 50 to over 1,500, with some users based across the
country from the server. Add in a group of users roaming on
their modem connections and the full scale of our band-
width issues become clear. We were presented with a prob-
lem faced by many developers of distributed systems: reduce
bandwidth usage and client wait time without removing any
functionality. This article shares our solution to this problem,
providing you with the simple code that helped us eliminate
over 80% of our network traffic.

Evaluating bandwidth is quite simple. The developer has
two options: get more of it or use less of it. Given the magni-
tude and expense of expanding bandwidth on a nationally
distributed application, it was clear we had to find ways to
reduce the amount of bandwidth required by our systems.
It’s important to note the wording: reduce the bandwidth
usage, not the amount of data passed over the network. To
preserve the functionality of the systems, we needed all the
data being passed over the line. In the end, there was one
conclusion: the data needed to be compressed.

As I researched compression in Java, I was looking for a
way to pass in an object and receive a compressed object
back. I found that there are a number of ways to compress
sockets or build zip files on the disk, but not the object-level
solution I was seeking. We needed an API that could be selec-
tively implemented and used for the largest data objects and
most critical applications without impacting other parts of
the system. We also wanted the ability to compress an object
one time, and use that same object for multiple downloads to
client machines, essentially caching a compressed object.

During this research, I found an article on compression
on the Java developer’s Web site that laid out all the pieces to
our solution (see Resources section). Using just a few of the
classes in the java.io and java.util.zip packages, we were able
to build an API to compress any serializable Java object.
Being the kind of developer who prefers simplicity, I was
excited at the ease of use and performance of the underlying
Java classes as well as the API we built. We were able to devel-
op and integrate our solution in just under two days, result-
ing in more than an 80% reduction in network traffic and
astounding improvements in client wait times.

A Compression Factory for Serialized Objects
The Java compression functions are located in the

java.util.zip package, where the Deflater class compresses
byte arrays and the Inflater class decompresses byte arrays.
As you may have noted, both of these classes perform com-
pression routines on byte arrays. Therefore, to compress an
object, the first step is to translate it into a representation of
bytes, which begins with the Serializable interface.

When an object implements the Serializable interface, it
can be represented as a stream of bytes. This byte stream can
be written using the ObjectOutputStream.writeObject()
method and reconstituted using the ObjectInput
Stream.readObject() method, allowing for a simple transla-
tion of a byte stream to and from an object. This ability to
serialize an object, capturing the resulting byte stream into a
byte array, provides a usable input for the compression
methods available in the java.util.zip classes.

Using this approach, we will accept a serialized object,
write the object into a byte array, and then compress the
array. The array of compressed bytes, along with a few other
key variables, will be stored in a new object, cZipObject,
which is shown in its entirety in Listing 1. The cZipObject will
encapsulate the compressed version of the input object. The

A

21October 2003www.JavaDevelopersJournal.com

IIBBMM RRaattiioonnaall
ibm.com/rational/seamless

22 October 2003 www.JavaDevelopersJournal.com

cZipObject can then be serialized to transfer across the net-
work. On the receiving end, the byte array will be extracted
from the cZipObject, decompressed, input to a byte stream,
and then reconstituted into an object. This process is not
truly compressing the object, but compressing the serialized
representation of the object and its data.

To easily integrate these compression routines on both
the server and client side, we’ll create a cZipFactory class that
will contain all the methods for compressing and decom-
pressing objects. We’ll create a number of methods along the
way that can be of direct use, such as a byte compression
method. By encapsulating both the compress and decom-
press functions into a single class, we can add the functional-
ity to both the client and server by creating a single object.
This will allow us to compress objects sent from the server to
the client as well as from the client back up to the server.

The first step is to convert the Serializable object into a
byte array. This can be achieved by using the Object-
OutputStream with an underlying ByteArrayOutputStream
from the java.io package. First, we’ll create a new ByteOutput
Stream that will capture the byte stream when the object is
written. We’ll then create a new ObjectOutputStream, write
the serialized object, and then extract a byte array from the
ByteOutputStream.

try {

ByteArrayOutputStream byteOut = new ByteArrayOutputStream();

ObjectOutputStream objOut = new ObjectOutputStream(byteOut);

objOut.writeObject(inObj);

byte[] DataArray = byteOut.toByteArray();

} catch (Exception e) {

System.out.println(e.getMessage());

}

With this code, we now have the ability to translate any
object that implements the Serializable interface into a byte
array capable of compression. The resulting byte array con-
tains the details of the object as well as the object’s data. The
array contains the essential structural and data attributes to
replicate the object and all its content. The next step is to
compress the data contained in the byte array, thereby com-
pressing the serialized representation of the object.

There are a few simple steps to compressing byte arrays
using the Deflater class from the java.util.zip package. First,
we’ll create a new array for the compressed bytes. Without a
method to accurately predict or estimate the size of the byte
array resulting from compression, it’s advisable to create an
array of equal size to the noncompressed bytes and then
shrink the array once the compression is complete and the
true size can be determined.

The next step is to create a new instance of the Deflater
class, passing in the desired compression level in the con-
structor. There are a few options for compression level, each
with benefits and drawbacks. The best compression option
provides the greatest reduction in byte size at the expense of
increased processing time. The best speed option provides a
good compression level, usually 80% or better, in the shortest
possible time. I usually opt for best compression, finding the
extra milliseconds in processing time worth the decreased
object size. For more information on the available compres-
sion levels, refer to the JavaDocs for java.util.zip.Deflater.

Once the Deflater object has been created, call the
setInput(byte[]) method providing the byte array we extract-
ed from the object serialization. Invoke the finish() method
to inform the Deflater class that all inputs have been defined.
Next, call the deflate(byte[]) method, providing the byte array

to house the compressed data. When this method completes
its execution, the data has been compressed and populated
in the output byte array. The getTotalOut() method in the
Deflater class will return the total number of bytes that were
written in the output byte array. Using the new array size,
we’ll create a byte array to the exact size of the compressed
output. We’ll then use the System.arraycopy function to copy
the bytes from the temporary array into the exact size array.

For ease of use, we’ll encapsulate these steps into a single
method named CompressBytes in the cZipFactory object (see
Listing 2). Now, when we need to compress a byte array, we
can invoke a single method:

byte[] bytesCompress = ZipFactory.CompressBytes(DataArray);

There are two key pieces of data required to quickly and
accurately decompress the object: the byte array containing
the compressed data and the original size of the serialized
byte array. When the byte array is decompressed, it will be
written into another byte array. Knowing the size of the
decompressed array will not only make the decompression
more efficient, it will also ensure accuracy. To save the byte
array and original size easily, we will encapsulate them in a
new instance of the cZipObject class.

cZipObject cZipObj = new cZipObject();

cZipObj.setData(bytesCompress, iOrigSize);

By combining all these steps, we can now create a
method that accepts any Serializable object and returns a
cZipObject. This is the Compress method in the cZipFactory
class, shown in its entirety in Listing 3. Using the new
method in cZipFactory greatly simplifies the integration of
object compression functions. First, we create an instance of
the cZipFactory class, providing the desired compression
level during object creation.

cZipFactory ZipFactory = new

cZipFactory(java.util.zip.Deflater.BEST_COMPRESSION);

Using the new cZipFactory class, we can compress a seri-
alizable object using a single line of code:

cZipObject newZObject = ZipFactory.Compress(inObject);

When the client or receiving machine obtains the
cZipObject, it needs to be decompressed and reconstituted
into an object. To achieve this, we’ll create another method in
cZipFactory to handle the Decompress operation. This
method will extract the byte array from the provided
cZipObject, decompress the array, and then translate the
bytes into an object. The Decompress method in cZipFactory
will return a Serializable object, which can be cast into the
original type of object.

Using the java.util.zip.Inflater class, we can easily decom-
press the byte array in a few lines of code. Given the com-
pressed byte array and the original size of the byte array, the
Inflater class can be used to decompress the byte array. As
this function could be useful in a variety of situations, we’ll
create a method in the cZipFactory class named
DecompressBytes. The method will accept a byte array con-
taining the compressed bytes and a primitive integer for the
size of the decompressed array. At this point, it’s very impor-
tant that we know the original size of the byte array (see
Listing 4). Without this information, it wouldn’t be possible
to accurately predict the total size of the decompressed bytes

J2
SE

H
O

M
E

J2
E

E
J2

M
E

23October 2003www.JavaDevelopersJournal.com

PPaarraassoofftt CCoorrppoorraattiioonn
www.parasoft.com/jdj10

24 October 2003 www.JavaDevelopersJournal.com

without extracting the data in a loop. Knowing the original
size of the byte array makes the decompression code easier
and more efficient.

With the ability to decompress a byte array in place, we
then move to the process of converting the bytes back into a
usable object using an instance of ObjectInputStream. First,
we’ll create a ByteArrayInputStream using the decompress
byte array. Using the byte stream, we’ll construct a new
ObjectInputStream to reconstitute the object. By invoking
the readObject method, the ObjectInputStream will translate
the byte stream into a usable object. To simplify our coding,
we’ll place this code in a method named
ConvertByteToObject in the cZipFactory class (see Listing 5).

The final step is to create a Decompress method in the
cZipFactory class that will accept a cZipObject and return a
Serializable object. The completed Decompress method is
shown in the cZipFactory class in Listing 3.

Using the cZipFactory class, we can now decompress a
cZipObject using a single line of code:

Serializable retObject = ZipFactory.Decompress(newZObject);

The Serializable object can then be cast into its original
form or in the same line of code as the call to Decompress:

Vector vClientList = (Vector)ZipFactory.Decompress(newZObject);

In the end, the cZipFactory provides
easy-to-use methods that translate serializ-
able objects to and from compressed repre-
sentations of objects. The entire compression
API can be quickly implemented in just a few
lines of code. Another important feature is the
ability to use the function selectively rather
than a system-wide change, such as com-
pressing a socket. The resulting cZipObject
can be extended or expanded to meet the
requirements of an application or can be
treated like any other Java object. This also
allows for the reuse of a cZipObject, allowing
the developer to cache a compressed object,
effectively eliminating the need to redundant-

ly perform compressions.

A Simple Client List Example
Now that we’ve built the classes to com-

press Serializable objects, we’ll work through
an example using the new objects. To begin,
let’s create a vector of client names. For our
example, we’ll create a vector with generic
content, but you could imagine this list of
clients being derived from a database call, an
XML document, or some other data source.

Vector vClients = new Vector(1000);

for (int i = 0; i < 1000; i++)

vClients.add(“Client # “ + i);

The resulting vector, vClients, contains
1,000 entries and when serialized is 14,046
bytes. If the client machine connects using a
28.8 modem, they will retrieve this vector at
approximately 3.33 KBS. At this throughput

rate, it’ll take the client machine approximately 4,200 millisec-
onds to download this list of 1,000 clients. If we wanted to add
in compression, we’d add this line of code on the server:

J2
SE

H
O

M
E

J2
E

E
J2

M
E

There are a number of benefits to using serialized object compression,
most notably the reduction in the size of the serialized output. The perform-
ance gain is directly related to the average object size, the bandwidth of the
client connections, and the CPU processing power of the server and client
machines. When determining whether to implement a compression function,
these factors should be projected in order to ensure a positive gain. Consider
this simple equation to determine if compression routines would be benefi-
cial:

[(Object Size bytes) ◊ 8] ÷ [Line Speed kbs] = Avg. Download Time

(ms)

[10000 ◊ 8] ÷ 128 = 625 ms

Now, reduce the average object size by 80% and recalculate the down-
load time; this time add an additional 100 milliseconds for processing time.

[(Object Size bytes ◊ 8 ◊ 0.2)] ÷ [Line Speed kbs] + 100 =

Compress Download

Time (ms)

{[(10000 ◊ 8) ◊ 0.2] ÷ 128 } + 100 = 225 ms

In the chart in Figure 1 we see how the slight increase in processing time
required for compression can create tremendous gains in download time.

Regardless of the bandwidth from the server to the client, compression
routines will have a definitive impact on network usage (see Figure 2).

It’s important to remember that at some point the law of diminishing

Calculating the Benefits of Compression

Figure 1 Impact of compression on download time

Figure 2 Object size reduction from compression

26 October 2003 www.JavaDevelopersJournal.com

//Using a pre-existing cZipFactory class instance

cZipObject zoClients = ZipFactory.Compress(vClients);

On the client machine, we add this line of code to decom-
press the cZipObject:

//Using a pre-existing cZipFactory class instance

Vector vClients = (Vector)ZipFactory.Decompress(zoClients);

Using this example, the Compress method executes in
approximately 40 milliseconds. We would then transmit the
zoClients object to the client machine, which when serialized
is 2,296 bytes. At 28.8 modem speed, the cZipObject instance
is downloaded to the client in approximately 690 millisec-
onds. The client then decompresses the cZipObject, casting
the contents into a vector. The Decompression operation on
the client takes an additional 30 milliseconds. The total time
using compression was 40 + 690 + 30 = 760 milliseconds.
When compared to the original download time of 4,200 mil-
liseconds, the compression technique saved 3,440 millisec-
onds of client wait time and reduced the total object size by
11,750 bytes, resulting in 83.6% less bandwidth consump-
tion. This is more than five times faster and is achieved with
a few simple lines of code on the server and client.

Listing 6 provides a simple testing class that was used for
this example and the benchmarks quoted in this article. By
using this simple testing class, you can see that when applied
to larger data structures, the compression functions make a

more profound impact on bandwidth reduc-
tion and client wait times.

Expense of Compression
There are two primary expenses to this

compression technique: increased memory
usage and CPU cycles. This approach is com-
pressing the serialized representation of an
object, which requires that the object be serial-
ized into an array that’s then compressed and
included in another serializable object. In
addition to the increase in memory usage,
there will be an increase in CPU utilization.
The compression routines are comprised of
arithmetic operations, which will result in
increased CPU usage during deflation and
inflation processing. For larger installations of
these compression routines, it would be rea-

sonable to expect notable increases in server CPU usage,
which would need to be analyzed in terms of frequency and
the size of the objects being compressed. As a benchmark, in
one installation the server processed approximately 10,000
compressions an hour on objects ranging from 10K to 350K.
The addition of compression functions resulted in approxi-
mately a 3% increase in CPU usage.

Another important factor to remember is that the client
machines will also have increases in memory usage and CPU
utilization to decompress the objects, or compress objects
being sent to the server. The speed of these decompression
routines will depend on the client machine hardware.

Conclusion
If you are writing distributed Java applications, whether

they’re EJB systems or custom RMI solutions, the introduction
of compression routines can provide tremendous improve-
ments to the response time and bandwidth consumption of
your programs. One of the primary advantages to the approach
presented here is its simplicity, allowing the developer to con-
tinually work with objects and avoid the compression functions.
Using the cZipFactory also allows the developer to avoid socket-
level operations or the creation of disk files, retaining the struc-
ture of existing programs and making it possible to selectively
implement the functions. Another benefit of the cZipFactory is
the use of standard Java libraries, making the compression func-
tion available in both J2SE and J2EE applications.

For our applications, the performance of the compression
routines has been excellent, with minimal server impact and
network usage down by 85%. Today, of the approximately
3,000 client machines using the compression classes, there
have been no reports of problems with CPU utilization or
memory usage. Overall, the introduction of compression was
the single largest performance improvement made in our five
year development effort.

Resources
• “Compressing and Decompressing Data Using Java APIs”:

http://developer.java.sun.com/developer/technicalArticle
s/Programming/compression/

• Object Serialization in Java:
http://java.sun.com/j2se/1.4.2/docs/guide/serialization/

• Java Documentation for java.util.zip package:
http://java.sun.com/j2se/1.4.2/docs/api/java/util/zip/pac
kage-summary.html

• Java Documentation for java.io package:
http://java.sun.com/j2se/1.4.2/docs/api/java/io/package-
summary.html

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Robert Beckett is the chief archi-
tect for The Software

Development Cooperative
(www.thesdc.com), where he
leads their efforts in building

high-performance, scalable Java
tools and solutions.

rbeckett@thesdc.com

returns becomes prevalent. For example, if the average size of the object
before compression is 5,000 bytes, then compression could reduce this to as
little as 1,000 bytes. The total expense of this compression would be about
100 milliseconds. If the client machines were on 28.8 modems, the compres-
sion would have a positive impact, reducing client wait time by about 1,100
milliseconds. However, if the client machines were on 512K connections,
downloading the original 5,000 bytes would only take about 90 milliseconds.
Even though the 1,000 bytes would take 17 milliseconds, we have now added
additional processing time for the compress and decompress operations,
potentially creating a negative return, and not significantly impacting down-
load time.

The chart in Figure 3 helps to illustrate how the benefits of compression
on client wait time can be quickly reduced in higher bandwidth environ-
ments. It’s important to note that while client wait time may not be signifi-
cantly reduced by compression, network traffic will always be reduced. Even
though the end user may not notice improvements, the network will always
benefit from the reduction in throughput.

Figure 3 Diminishing returns on compression of 20K object

Evaluate and experience JClass today - visit:

http://java.quest.com/jclass/jdj

JClass®

Rich client user interface and utility components.

Server-side web client interface and reporting

components. Whatever type of Java development

you’re doing, JClass can help.

JClass ServerViews
Add professional content to your Servlet, JSP or J2EE

applications. Generate interactive charts with JClass

ServerChart and dynamic PDF

reports with JClass ServerReport.

Now fully XML and Web Services

ready!

JClass DesktopViews
Essential components for

client-side Java applications and

applets: 2D/3D charts, tables/grids,

data-entry fields, database access

and much more.

The only Java components you need
for J2EE or Swing development

© 2003 Quest Software, Inc. Quest, Sitraka and JClass are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All other
products are trademarks or registered trademarks of their respective companies.

28 October 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Listing 1

1 public class cZipObject implements java.io.Serializable
2 {
3 private int iOriginalSize;
4 private byte[] compressData;
5
6 public cZipObject()
7 {
8 iOriginalSize = 0;
9 }
10
11 public synchronized void setData(byte[] inData, int

iOrigSize)
12 {
13 compressData = inData;
14 iOriginalSize = iOrigSize;
15 }
16
17 public synchronized byte[] getData()
18 {
19 return compressData;
20 }
21
22 public synchronized int getOriginalSize()
23 {
24 return iOriginalSize;
25 }
26 }

Listing 2

1 public byte[] CompressBytes(byte[]DataArray)
2 {
3 byte[] testBytes = new byte[DataArray.length];
4
5 cDeflate = new Deflater(iCompressLevel);
6 cDeflate.setInput(DataArray);

7 cDeflate.finish();
8 cDeflate.deflate(testBytes);
9
10 int iRetLen = cDeflate.getTotalOut();
11 byte[] retArray = new byte[iRetLen];
12 System.arraycopy(testBytes, 0, retArray, 0,

iRetLen);
13 return retArray;
14 }

Listing 3

1 import java.io.ByteArrayOutputStream;
2 import java.io.ByteArrayInputStream;
3 import java.io.ObjectInputStream;
4 import java.io.ObjectOutputStream;
5 import java.io.Serializable;
6 import java.util.zip.Deflater;
7 import java.util.zip.Inflater;
8
9 public class cZipFactory
10 {
11 private int iCompressLevel = Deflater.BEST_COMPRES

SION;
12 private Deflater cDeflate;
13 private Inflater cInflate;
14
15 public cZipFactory(int iCompLevel)
16 {
17 iCompressLevel = iCompLevel;
18 }
19
20 public cZipObject Compress(Serializable inObj)
21 {
22 cZipObject cZip = new cZipObject();
23
24 try {
25 ByteArrayOutputStream byteOut = new

ByteArrayOutputStream();

B Y D E V E L O P E R S , F O R D E V E L O P E R S

And not a single iota of hype.

BEA dev2dev Days is the worldwide, one-of-a-kind, no-nonsense
seminar that gives you the tools you need to solve today’s toughest

development and integration challenges.

All in a single day. With no hype. And no spin. Just the facts.

You want code? We got code. Code-level demonstrations, in fact, on
everything from architecting to building to integrating enterprise solu-

tions on BEA’s industry-leading WebLogic® 8.1 platform.

At the seminar, you’ll learn information and techniques to help you
build Web-based and service-oriented applications; work with XML

and Web services; integrate with enterprise resources and applica-
tions; and much more.

But you have to act fast. A BEA dev2dev Days seminar is coming
soon to a city near you, and spaces are limited. The cost to

register is US$169.00.

1 DAY

20 CITIES

500 MINUTES OF TRAINING

1,000s OF DEVELOPERS

ALL THE CODE YOU CAN HANDLE

BROUGHT TO YOU BY:

SEPTEMBER – NOVEMBER 2003
COMING TO A C I TY NEAR YOU :

Ams te rdam
A t l an t a

Banga l o r e
Be i j i ng

Bos t on
Ch i ca go

Da l l a s
Denve r

London
Mad r i d

Mex i co C i t y
Mun i ch

New Yo rk
Pa r i s

San Fr anc i s co
Seou l

S t ockho lm
Tokyo

To ron t o
Wash i ng t on , D .C .

Register Now!
bea.com/dev2devdays2003

or call
1-925-287-5156

Register Now!
bea.com/dev2devdays2003

or call
1-925-287-5156

30 October 2003 www.JavaDevelopersJournal.com

26 ObjectOutputStream objOut = new
ObjectOutputStream(byteOut);

27 objOut.writeObject(inObj);
28
29 byte[] DataArray = byteOut.toByteArray();
30 int iOrigSize = DataArray.length;
31 cZip.setData(CompressBytes(DataArray),

iOrigSize);
32 } catch (Exception e) {
33 System.out.println(e.getMessage());
34 }
35 return cZip;
36 }
37
38 public byte[] CompressBytes(byte[] array)
39 {
40 byte[] testBytes = new byte[array.length];
41
42 cDeflate = new Deflater(iCompressLevel);
43 cDeflate.setInput(array);
44 cDeflate.finish();
45 cDeflate.deflate(testBytes);
46
47 int iRetLen = cDeflate.getTotalOut();
48 byte[] retArray = new byte[iRetLen];
49 System.arraycopy(testBytes, 0, retArray, 0,

iRetLen);
50 return retArray;
51 }
52
53 public Object Decompress(cZipObject cZip)
54 {
55 byte[] unzipped = DecompressBytes(cZip.get

Data(), cZip.getOriginalSize());
56 return ConvertByteToObject(unzipped);
57 }
58
59 public byte[] DecompressBytes(byte[] array, int

iLen)
60 {
61 byte[] retBytes = new byte[iLen];
62
63 try {
64 Inflater decompresser = new Inflater();
65 decompresser.setInput(array);
66 decompresser.inflate(retBytes);
67 decompresser.end();
68 } catch (Exception e) {
69 System.out.println(e.getMessage());
70 }
71 return retBytes;
72 }
73
74 public Object ConvertByteToObject(byte[] data)
75 {
76 Object objCache = null;
77
78 try {
79 ByteArrayInputStream fIn = new

java.io.ByteArrayInputStream(data);
80 ObjectInputStream objInput = new

ObjectInputStream(fIn);
81 objCache = objInput.readObject();
82 fIn.close();
83 } catch (Exception e) {
84 System.out.println(e.getMessage());
85 }
86 return objCache;
87 }

Listing 4

1 public byte[] DecompressBytes(byte[] array, int
iLen)

2 {
3 byte[] retBytes = new byte[iLen];
4
5 try {
6 Inflater decompresser = new Inflater();
7 decompresser.setInput(array);
8 decompresser.inflate(retBytes);

9 decompresser.end();
10 } catch (Exception e) {
11 System.out.println(e.getMessage());
12 }
13 return retBytes;
14 }

Listing 5

1 public Object ConvertByteToObject(byte[] data)
2 {
3 Object objCache = null;
4
5 try {
6 ByteArrayInputStream fIn = new

java.io.ByteArrayInputStream(data);
7 ObjectInputStream objInput = new

ObjectInputStream(fIn);
8 objCache = objInput.readObject();
9 fIn.close();
10 } catch (Exception e) {
11 System.out.println(e.getMessage());
12 }
13 return objCache;
14 }

Listing 6

1 import java.util.Vector;
2
3 public class cZipExamples
4 {
5 cZipFactory ZipFactory;
6
7 static public void main(String[] args)
8 {
9 cZipExamples newZipExam = new cZipExamples();
10
11 newZipExam.ClientExample(10);
12 newZipExam.ClientExample(100);
13 newZipExam.ClientExample(1000);
14 newZipExam.ClientExample(10000);
15 newZipExam.ClientExample(100000);
16 newZipExam.ClientExample(1000000);
17 }
18
19 public cZipExamples()
20 {
21 ZipFactory = new cZipFactory(java.util.zip.

Deflater.BEST_COMPRESSION);
22 }
23
24 public void ClientExample(int iSize)
25 {
26 Vector inVector = new Vector(iSize);
27 for (int i = 0; i < iSize; i++)
28 inVector.add("Client #" + i);
29
30 long lStart = System.currentTimeMillis();
31 cZipObject newZObject =

ZipFactory.Compress(inVector);
32 long lTime = System.currentTimeMillis() -

lStart;
33
34 int iOrig = newZObject.getOriginalSize();
35 int iNew = newZObject.getData().length;
36
37 System.out.println("Zipped Vector object con

taining " + iSize + " from " + iOrig +
" to " + iNew + " in time: " + lTime);

38
39 lStart = System.currentTimeMillis();
40 Vector vClients = (Vector)ZipFactory.Decompress

(newZObject);
41 lTime = System.currentTimeMillis() - lStart;
42
43 System.out.println("Returned Vector object in

time: " + lTime);
44 }
45 }

J2
SE

H
O

M
E

J2
E

E
J2

M
E

31October 2003www.JavaDevelopersJournal.com

OOaakk GGrroovvee SSyysstteemmss
www.oakgrovesystems.com/jdj

32 October 2003 www.JavaDevelopersJournal.com

few months ago I wrote an editorial on
the touchy subject of proper testing
(Vol. 8, issue 6). Thanks to you there
was much support (and a volume of
information from Parasoft and how
JTest linked with unit testing; this
opened my eyes!). No one disagreed
with me, but somehow I can’t see unit-
testing libraries being included with
the next update of the software devel-
opment kit.

This brings me to another touchy
subject – proper logging. If you admin-
ister any type of Unix-like system,
you’ll be used to working with log files
in some form or another. Ever thought
of logging your Java programs like that?
Okay, the majority of us have watched
everything spew out of System
.out.println() or printStacktrace() at
some time or another. No matter what
the class of application – high per-
formance, low performance, high visi-
bility, or just something on your own
machine – it doesn’t matter. You have
to log your messages properly.

There are a number of logging
packages out there. The main one is in
the 1.4 SDK (have a look at the
java.util.logging package), Log4J by the
Apache Jakarta project, and then there
are some lesser known loggers like
LN2. All do the same thing: record
information to make your life easier.

The reason people don’t log info is
pretty much the same reason people
don’t do proper testing: it’s a mindset
thing. The aim here is to create history
to prove that your application is run-
ning well; it also helps you trace back
errors and warnings. Watching your
entire history hurl itself onto your con-
sole output is not real help to you or
anyone else.

Archive your logs daily no matter
how big they are. If you use or have
used Apache, you may have come
across a utility called rotatelogs, which
organizes your log files and resets the
current one for a new day or if the log
file size reaches a certain size. My logs
are generated daily, then, when the
month is up, I burn them to CD.

If there is any change of data, that
transaction should be logged. You

need a user trail to see what is hap-
pening. It’s not snooping; it’s protect-
ing yourself. What happens when
someone claims an action happened
when you know it didn’t? You check
the logs.

Dependency Rot
Another oversight is the mainte-

nance of third-party Java libraries.
With the amount of active project
work on SourceForge, you should be
updating these JAR files as much as
you can. What I tend to see is a trail
of old and unsupported libraries used
in applications. What would happen
if I updated to the most recent JAR
file? Would the application still func-
tion? There’s usually one way to find
out.

A set of mirror sites that had all the
up-to-date JAR files would be a good
idea. Then we could update periodical-
ly. My favorite example of this is the
apt-get program that’s used in Debian
Linux. It’s one of the best updaters I’ve
seen. The onus is still on the system
administrator to update the package
list first. When you run apt-get, it
checks dependencies and related pack-
ages; you can also do first time installs
with it.

Our responsibility does not stop
once our applications are shipped to
clients. We still provide a service, as we
are a service-oriented industry. We
have a duty to inform, update, and
educate customers as we see fit and do
it with a large amount of respect and
politeness.

If we can get these two issues
cracked, logging and dependency, we
all stand a pretty good chance of
extending our careers and making Java
the platform it deserves to be – indis-
pensable.

References
• Log4J: http://jakarta.apache

.org/log4j
• LN2: http://enigmastation.com/ln2
• Debian: http://debian.org
• JTest: www.parasoft.com/jsp/prod-

ucts/home.jsp?product=Jtest&itemI
d=11

I Love
Logging!

A

J2SE INSIGHT

I Love Logging!
If you administer any type of

Unix-like system, you’ll be used

to working with log files in some

form or another. Ever thought of

logging your Java programs like

that? Okay, the majority of us

have watched everything spew

out of System.out.println() or

printStacktrace() at some time or

another. No matter what the

class of application – high per-

formance, low performance,

high visibility, or just something

on your own machine – it

doesn’t matter. You have to log

your messages properly.

Java Games
Development

This final part of the three-

part series concludes with a dis-

cussion on .NET, developing 3D

games using Java, and whether

the players have found any bene-

fits to using different approaches

to games developement.

Jason Bell is the senior program-
mer for a B2B portal. He’s also a

keen supporter of people read-
ing the API docs before asking

questions. In his spare time he’s
involved with building RSS

development tools.

jasonbell@sys-con.com

32

34

Jason Bell
J2SE Editor

J2
SE

H
O

M
E

J2
E

E
J2

M
E

40Java and
Stream
Ciphers

34 October 2003 www.JavaDevelopersJournal.com

art 1 of this series appeared in the
August issue of Java Developer’s Journal
(Vol. 8, issue 8), and Part 2 appeared in
the September issue (Vol. 8, issue 9).

JDJ: Microsoft has received quite a lot of
good press (or propaganda, however
you’d like to look at it) for their .NET
product, and there has even been dis-
cussion that it will be/is suitable for
games development with good DirectX
bindings. Since Java is only just out of
the gate (in terms of commercial games
development), do you see .NET provid-
ing serious competition in this bur-
geoning market, or are there some (per-
haps hidden?) advantages to Java that
might make the difference in this case?

Jeff K: Don’t confuse .NET the platform
with CLR the VM, or C# the language.

.NET will not be suitable for games.
Its XML-based communications proto-
col is by definition slow and verbose,
and that’s before you get into the other
architectural issues. I have no fear of
.NET becoming the default back-end
technology for networked games – it
was designed with business apps in
mind, which need totally different
properties.

As for C# and CLR (which, as I
understand it, are heavily based on
MSVM), there are a number of points.
MSVM has always supported DirectX
through JDirect, but it hasn’t taken off
as a game platform. That they are con-
tinuing this support doesn’t seem like
anything new to me. C#/CLR has none
of the benefits of Java (it’s not cross
platform, being YADC (yet another
dialect of C) it’s not likely to apprecia-
bly improve either productivity or code
correctness.

About all it does is muddy the
waters around Java, which in my opin-

ion is maybe all it’s supposed to do.
Today we have cross-platform tech-

nologies emerging in Java that provide
all the benefits of DirectX without sacri-
ficing portability, productivity, or code
correctness. Examples of this are the
LWJGL open source library project, and
the open source bindings for Java to
OpenGL (JOGL), OpenAL (JOAL), and
controller input (JInput).

Doug T: As Jeff mentions, this mostly
affects Java from the C# side of things.
One advantage Java has is time. At GDC
this year, there was a session on
Managed DirectX, which is effectively
DirectX for C#, and you could have
replaced every instance of C# with Java
in the presentation. We’ve been solving
those problems for years, so we have a
head start.

Cas P: [Microsoft’s] VM technology is
currently inferior, but not for long. The
easy integration with a direct, ultra-
capable gaming API (DirectX) means
that it’s only a matter of time before M$
starts gaining a majority unless there’s
some direct competition in the same
space from Sun. It’s my belief that a
three-pronged defense – for defense it
is, as Java is the innocent blinking rab-
bit in Microsoft’s headlights – is need-
ed:
1. Gang together with game technolo-

gies, embrace and flourish – OpenGL
and OpenAL are Sun’s only hope
against DirectX, so they’d better start
supporting it, encouraging it, spon-
soring it, and even helping it. If Sun
is seen to be behind OpenGL to the
point where their own products
utterly depended on it, you’d get the
positive feedback loop required to
ensure that both support each other
and grow.

Java Games
Development
Part 3 of 3

P

FORUM

J2
SE

H
O

M
E

J2
E

E
J2

M
E

hosted by
Jason R. Briggs

JJaassoonn RR BBrriiggggss:: Java Developer’s Journal con-
tributing editor and your host; games player
when he has time, games developer…on occa-
sion.
GGeerraarrddoo DDaaddaa:: Metrowerks’ product manager
for CodeWarrior Wireless Studio.
EErriikk DDuuiijjss:: Former musician/engineer/producer
with a (games) programming passion, now an IT
consultant. Switched careers for the sake of bet-
ter pay as well as maintaining a passion for
music instead of “eating it” so to speak. Author
of the Java Emulation Framework (JEF) and
CottAGE.
SShhaawwnn KKeennddaallll:: Developed Java and Java
3D–based game technology demos for Full Sail,
Sun Microsystems, and I.M.I., and displayed at
GDC and SIGGRAPH since 1999. He has five years
of 3D technology teaching experience, and in
2002 founded Immediate Mode Interactive, LLC,
a game technology company dedicated to the
development and application of Java technology
in computer games (www.imilabs.com).
JJeeffff KKeesssseellmmaann:: Architect for game technologies,
Advanced Software Technologies Group at Sun.
He worked on the JDK performance tuning team
and co-wrote Java Platform Performance:
Strategies and Tactics.
CChhrriiss MMeelliissssiinnooss:: Sun’s chief gaming officer
and responsible for driving an industry-wide
movement toward Java technology–based
game development and building infrastruc-
ture programs for massively connected game
play.
CCaassppiiaann RRyycchhlliikk--PPrriinnccee:: An IT consultant in the
UK who for the last 10 years has specialized in
client/server systems with RDBMS back ends.
He has just released a new game, Alien Flux
(www.puppygames.net).
DDoouugg TTwwiilllleeaaggeerr:: Chief architect of the Java
Games Initiative at Sun Microsystems. One of
the architects of Java 3D, he has also worked in
the graphics research group at Sun looking at
advanced rendering techniques and programma-
ble shading.
DDaavviidd YYaazzeell:: VP of software development of trad-
ing systems and portfolio management systems
at a leading financial investment company (by
day), and by night a games developer for (and
founder of) the Magicosm project (a 100% Java-
based MMORPG).

The players are:

36 October 2003 www.JavaDevelopersJournal.com

2. Actively put major resources into the
gaming space, gain the confidence of
developers by being seen to do this,
and start listening more keenly to
suggestions and being a little more
open about what’s being done to
address issues. I think we need a
dedicated engineering, marketing,
and support team for the whole
issue, yet I feel that Jeff and Chris are
the only Sun employees who are
even trying, and they only seem to be
let out of their cubicles once they’ve
said their prayers to Solaris and
flayed themselves for eight hours
over a hot spreadsheet.

3. Hardware assault – the big, big ques-
tion: Is there room for a Java-based
console, and if not, why not? Perhaps
Sun could even fund it by running it
on a Sparc chip. If there’s no room for
a Java-based console, then truly Java
is failing as the games platform of
choice because it’s the best place it
could possibly be from a developer’s
perspective.

Erik D: I think the problem with .NET is
that you are specifically choosing
Microsoft and Microsoft alone and, in
effect, you explicitly exclude a large
market potential.

There’s no way .NET will become
available on a PlayStation, for example.
Of course, we also have no Java (yet?)
on PS, so currently development will
stick to C++.

Java does have a longer history than
.NET and has proven itself in many
more ways than .NET has, such as the
obvious platform independence. If Java
did spread to PS3 and XBOX, I’d say
“why C# and stick with PCs if we
already have Java?” if I were a develop-
ment company.

Shawn K: I do see serious competition
from this because MS will do whatever
it can to move developers to Windows,

games or otherwise. It doesn’t matter if
C#/.NET isn’t exactly Java. They listen
to their developers and changes get
made. The fact that MS will make .NET
work on the XBox and future XBoxes
makes it all the more compelling.

Also, MS makes games. They make
one C# game that’s a hit and it’s a done
deal. Developers and publishers will
look at C#, and the same dynamic I
stated before.

The only advantages for Java that I
can see right now are:
1. Huge existing developer base and

knowledge base.
2. Deep desire in game developers not

to use MS stuff. That is a true phe-
nomenon. Many working game
developers I have talked to will try
anything that is not MS tech.

I would like to point out some
major disadvantages as well.
1. Licensing issues
2. Media APIs

JDJ: I know some of you are currently
developing 3D games using Java. What
was the reasoning behind your particu-
lar approach? Part 2 of this question is:
Do you have any regrets? Are there any
benefits to another approach that you
wish you could take advantage of?

Cas P: First a quick mention about
LWJGL. LWJGL is a modest library, still
in development, and it aims to do very
little other than to do things Java can’t,

like draw with OpenGL. There is a fre-
quently misunderstood purpose to the
library though. LWJGL is not an add-on
library to J2SE to allow you to write
OpenGL applications in Java. It was
designed from the very beginning to be
a portable console game library, even if
it does end up being only completely
theoretical. There’s only one window in
LWJGL, and we get a lot of requests for
multiple windows. You can’t even insist
on a title bar and windowed mode; it’s
specifically meant to provide full
screen–only games. We get a lot of

requests to enable one to create lots of
windows and have them behave as they
should. But then it wouldn’t run on a
console, would it? We’ve deliberately
created a platform based around what
we know the hardware and underlying
O/S need to be for gaming: a display,
some speakers, a few input devices –
nothing more.

A side effect of LWJGL is it enables
us to deploy games with less licensing
restrictions: I can natively compile my
games for Windows, which solves a
bunch of other problems I won’t go into
here, and the demos come out under
the magic 5MB download patience
threshold.

I developed LWJGL in the first place
because I find the OpenGL API easy
and, most important, fast. Java 3D is so
far above my head I barely know where
to begin. This is the problem a lot of
developers have with Java 3D. If you
want to learn 3D programming, Java 3D
isn’t the thing for you.

The other reason for LWJGL was
simplicity. It’s a platform; there’s a spec-
ification to program to. It’s a bit vague
right now because we’re only in alpha,
but it removes a lot of uncertainty and
hassle. I discovered Alien Flux ran on
Linux without any trouble at all. I was
more surprised than anyone. Once it’s
up and running, it behaves in exactly
the same way as the Windows one. You
wouldn’t know you were running Linux
underneath it because it’s full screen. I
have the same hope for PlayStation 3

one day. You’d never know it was writ-
ten for the PC because all the developer
has to use is an empty black screen,
some speakers, and three input
devices, not all of which will even be
present.

Another reason for LWJGL is per-
formance – speed and size. I can write
absolutely optimized code for LWJGL
and it runs in hardly any memory. Alien
Flux would even run on a PlayStation’s
32MB of RAM with a little tweaking to
the graphics. There are no caveats with
regard to performance; all the knowl-

FORUM
J2

SE
H

O
M

E
J2

E
E

J2
M

E

“I think the problem with .NET is that you

are specifically choosing Microsoft and

Microsoft alone and, in effect, you
explicitly exclude a large market potential”

––EErriikk DDuuiijjss

37October 2003www.JavaDevelopersJournal.com

BBoorrllaanndd
CCoonnffeerreennccee 22000033

connect.borland.com/borcon03

38 October 2003 www.JavaDevelopersJournal.com

edge about performance is from
OpenGL, so it’s very widely understood.
If you write a slow LWJGL game, it’s
because you’ve used OpenGL incorrect-
ly, not because we’ve written some
dicky code in the library.

And no regrets. Not for one
moment do I think I could have done it
easier or better with any other technol-
ogy. GL4Java, Direct3D, Java 3D –
they’re all deeply flawed when it comes
to writing portable games in Java. My
only real regret is that it’s unlikely that
we’ll ever be endorsed by Sun.
Although if I may make a prediction
here: LWJGL is very likely to become
the driving factor in Java games devel-
opment.

Jeff K: In terms of using OGL incorrectly,
that may be true for relatively simple
games, but I’m not sure it carries into
the A-lines games of today. OGL doesn’t
give you scene graph management;
you’re going to need to write that your-
self. It doesn’t give you physics; again
you’re going to have to code that. My
guess is that you’ve covered about half
of the core graphics issues with OGL, or
about 5% of that 10% I talked about
earlier.

For some folks that may be the per-
fect bar, for others it may be too low.
However, all that being said, I do agree

that being able to directly write to OGL
is a good thing regardless of what you
do on the top of it.

Erik D: I’m not married to LWJGL “till
death do us part” or anything, but I do
have a love affair with it because I like
the low-level approach. It doesn’t
restrict me in any way and I believe it
might become a key factor for well-per-
forming games written in Java.

I’ve been playing a little with J3D,
but I thought OpenGL was a lot easier
to get into, and I like keeping in full
control of things. Personally, I don’t

like the idea of J3D completely hiding
details; of course, this isn’t fully justi-
fied because I haven’t done much
with J3D, but I do strongly believe
you should always be able to get as
low level as necessary where games
development is concerned and I’ve
seen people struggle with J3D issues
that they don’t seem to be in control
of.

If J3D had been built on top of an
OpenGL wrapper, I’d probably have
used that because it obviously address-
es the problem of LWJGL, that there
aren’t any scene graph implementa-
tions available for it yet.

Shawn K: One point I’d like to bring to
light is the scene graph versus immedi-
ate mode argument. We have to
remember that Java 3D is implement-
ing a scene graph, and Java/OGL is
simply immediate mode access
through Java. There are pros and cons
to both and they’re completely inde-
pendent of Java and Java 3D. That
argument has waged on for genera-
tions.

We chose J3D for several reasons.
1. Ease of use. I never want to code

immediate mode graphics if I can
help it. It’s like assembly for graph-
ics. I use a high-level language and a
high-level graphics system. I have
also used scene graphs (from SGI to

PC) outside of Java and plan to keep
on doing so. Eventually the class I
teach adopted RenderWare (a pseu-
do-scene graph API) once it was an
acceptable practice.

One problem, due to the high level
and ease of use, is that developers
think they can make great 3D graph-
ics projects and not know anything
about 3D graphics. Sometimes the
questions that are posted on the J3D
list are atrocious. OGL is so low level
you have to have a bit better pro-
gramming skill as well as more 3D
knowledge to use it. I experience this
in my courses as well. The point

being, when you know what you’re
doing, a scene graph or immediate
mode are both great tools. When you
don’t know, a scene graph is a lot eas-
ier.

2. Scene management. Just like some
LWJGL users are finding, eventually
you have to build a scene graph any-
way for any scene bigger than a
bread basket.

3. Common data structures for public as
well as private interchange. By this I
mean, there’s a thriving community
of developers who code to J3D and
easily trade huge code packages
because they all use J3D classes and
can be tested and integrated with
very little modifications if written
well. I’m not saying those actual
packages will end up in a final pro-
duction, but the integration-to-test
phase is lightning fast. If all these
developers were using OGL wrap-
pers, the exchange would be close to
nothing.

Look at the OpenGL community as
it is. There’s a lot of trading but it is
all techniques and code “snippets,”
not loaders and behaviors or even
collision systems because each OGL
developer has his or her own scene
graph equivalent structure on top of
OGL that they will have to translate
to for any techniques and code they
get from the outside world.

4. Better cross-platform than OGL
alone. We used Java/J3D for a long
time as a true cross-platform solu-
tion. Our students’ laptops ran best
under DirectX, and our classroom
workstations under OpenGL. For
their work it was no problem to use
either install and everything worked.
This is less of an issue today as the
laptops have better support for OGL
and the workstations for DirectX. The
current Java/OGL world is still an
OGL on Linux/Solaris/Windows
world so J3D has a slight edge there.

5. Legacy. It was the only way to do 3D
in Java at the time we started.

FORUM
J2

SE
H

O
M

E
J2

E
E

J2
M

E

“One problem, due to the high level and
ease of use, is that developers think they

can make great 3D graphics projects and
not know anything about 3D graphics”

––SShhaawwnn KKeennddaallll

Jason R. Briggs is a Java programmer
and development manager for a

wireless technology company, based
in Auckland, New Zealand. He is also

a contributing editor of Java
Developer’s Journal.

jasonbriggs@sys-con.com

In the 1990s, I worked

extensively with the

Winsock 2 interface and

encryption when it first

came out from Microsoft in

Beta form; it was exciting

in those early days of

networking because it

allowed you to easily

encrypt data through the

networks.

by Rich Helton

40 October 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

PRODUCE SECURE DATA

41October 2003www.JavaDevelopersJournal.com

42 October 2003 www.JavaDevelopersJournal.com

When Java sockets came out, the encryption could be
easily managed through a stream of data. After getting data
in a socket stream and encrypting the stream as it passed
through the Internet, I was hooked on Java. While C++ was
prevalent, it didn’t seem to have streaming algorithms
ingrained in the language as well as Java did. Java created a
secure programming language that separated itself from the
operating systems and network internals, while the streams
created a layer to process a continuous wave of data that
could be encrypted and further the evolution of program-
ming techniques.

In this article I discuss streams from the cipher per-
spective and provide an example of how to design and
build a stream algorithm so you can practice proper tech-
niques rather than rely on the technology to do it for you
(an Ant script to deploy is included with the source code,
which can be downloaded from www.sys-
con.com/java/sourcec.cfm). The basic terminology to
remember throughout the article is that a cipher is an
encryption/decryption algorithm, and a stream is data
processed a piece (either bit or byte) at a time. Knowing
only those terms, you can build on the rest.

Theory
If you understand a lot about pattern matching and

encryption techniques, and are familiar with Applied
Cryptography by Bruce Schneier, this section may seem too
simple. For the rest of you, I’d like to start with the basics of
streams and encryption (I’ve also written a book, Java Security
Solutions, that provides good information on the topic).

As I mentioned earlier, a stream is data that’s processed
one bit or, more likely, one byte at a time. It’s worth noting

that most algorithms will only work on a byte as a whole, not
at a bit level. A stream cipher is both a decryption and
encryption algorithm for streams. Encryption is used to
change readable text – plaintext – into a nonreadable form –
ciphertext. Decryption does the reverse. While most ciphers
follow various block cipher modes based on the original DES,
a true stream cipher (like RC4) comes in handy with
unknown block sizes.

For those who are unfamiliar with ciphers and keys, a
cipher is the engine that decrypts and encrypts data. The key
is the extra data needed for the engine to complete the task.
In the early days of cryptography, only a handful of people
knew the algorithms and only they could encrypt and
decrypt data. As time progressed, most algorithms became
published specifications that anyone could access, and the
key became the missing piece to ensure that not everyone
could encrypt and decrypt the data. The key is a very impor-
tant element that must be protected at all costs, especially if
the key is symmetric. A symmetric or secret key is one in
which the same key is used for encryption and decryption.

Anyone who has access to the key can easily decrypt a mes-
sage. Finding the algorithm that was used to encrypt is not
complex, because like a virus, an encrypted message may
also contain signatures that can describe its originating algo-
rithm. The size of the key will determine how easy or difficult
it is to break an encryption simply because a smaller size key
has fewer possible choices, while a larger key has more.

To understand the concept of a stream cipher, part of the
basics, let’s discuss the theory of a key stream, sometimes
called a running key. A key stream, in theory, is a continuous
key that’s constantly and randomly generated to produce the
ciphertext. In other words, each key byte generated is XORed
with a plaintext byte to produce a ciphertext byte for the size
of the plaintext. In theory, if we have true randomness and
the key is infinite, then the encryption could not be broken.
The larger the key, the more secure the ciphertext, because
there are more permutations of a key that have to be broken.
The more random the key, the harder it is to break, because
any pattern becomes harder to reverse.

The algebraic notation for the previous discussion can be
represented as ci = pi ≈ ki. The symbol ci stands for the
ciphertext at index i, the symbol pi stands for the plaintext

data at index i, and ki stands for the key at index i. As we’ll
see in the RC4 algorithm, XOR is great because the same
algorithm can be used in reverse. That is pi = ci ≈ ki , which
means I can find the plaintext by XORing the ciphertext and
the original key.

One of the practices that evolved from running a key the-
orem is using a product of one ciphertext byte as the key for
the next plaintext byte. Another evolution of the running key
is the idea of using the key to generate a larger set of keys by
hashing initialization data to generate an S-box (a substitu-
tion box). S-boxes are discussed later, but can be described
as creating a vector from a key to manipulate the data in an
algorithm.

When all is said and done, we need to have a key (say 40-
bits in some cases) with as few patterns as possible and the
key needs to be kept secure. If you remember anything from
this article, safeguarding the key must be the highest priority,
since it controls access just like the keys to your car or house.
The other point to remember about keys is that size does
matter.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

To make the key pattern simple, if my key was all 0s and XORed with the
plaintext, then the ciphertext would be the same as the plaintext. The cipher
is useless. Now if the key contained only 1s and XORed with the plaintext, it
would be easy to see the difference. If there was more of a mix of 1s and 0s
throughout, it would become more difficult to see any relationship between
the plaintext and ciphertext.

Key Patterns

Java created a secure programming
language that separated itself from the

operating systems and network internals”“

44 October 2003 www.JavaDevelopersJournal.com

Practical
In the previous section, I expressed the need for the key

and its randomization. The providers of Java realized this
need, and came up with a more random number generator
than most libraries provided. Therefore they produced the
java.security.SecureRandom class to reseed the generator.
The idea is to create a variation of different keys that no one
could guess at. Many random generators are not truly ran-
dom, and some keys could be guessed by knowing the gener-
ator. Random generators use a seed to help give it something
different to generate a new number. Many may use the time
of day as a seed. Others may even randomize the seed, but if
there is a flaw in the randomization, the seed won’t be any
better. The SecureRandom class reseeding process does not
initialize the random number generator, but factors the ini-
tial seed with the next to produce a new seed. For this reason
alone, some may consider using Java for their encryption
needs.

Other utilities that play a big role in secure programming
in Java are the KeyStore, the jarsigner, and the security man-
ager. While this article is too brief to describe these utilities in
detail, you need to know that Java provides a utility called the
keytool to store keys in a secure store, that Java has a jarsign-
er utility to sign a JAR file so it can’t be written into without a
certificate, and Java has a security manager that can control
which resources can be accessed during runtime using a
security policy. These utilities can control access to vital
resources and data. I’d like to note that these resources come
out of the box in Java as well as many encryption algorithms
and, again, this is a benefit of using Java.

The de facto stream algorithm is RC4. RC4 stands for
Ron’s code number 4, Ron being Ron Rivest, the “R” in RSA.
Since it’s the de facto stream algorithm, I’ll use it as an exam-

ple to design, build, and deploy a stream algorithm. The rea-
son you should understand cipher algorithms and their uses
is not just to know how to use them, but to understand when
to use them, their vulnerabilities, strengths, and how to
develop your own algorithms.

After spending many years as a consultant, I’ve heard
programmers proclaim, “I just need to know how to use it,
not what it does; there are builders of the JCEs who are con-
cerned about those talks.” Yet, I have gotten a lot of consult-
ing work reworking some organizations’ code, usually

because someone didn’t understand the algorithm correctly.
Just as an e-commerce programmer may understand the
internals of JSPs and EJBs, a security programmer needs to
know the internals of RC4, RSA, and other algorithms. From
the IT security officer’s point a view, programmers should be
able to give the reasoning, strengths, weaknesses, and history
behind the algorithms that they’re using. Not understanding
a cipher algorithm in enough detail could make misusing the
algorithm worse than not having an algorithm at all.

RC4
RC4 is the de facto stream algorithm that was made pub-

lic by an anonymous cypherpunk contributor in 1994. The
knowledge of the algorithm was made public, but I believe its
commercial use is still licensed through RSA. I’ll leave the
reader to contact RSA before using it commercially. Examples

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Here are simplified steps for getting a service provider certificate from
Sun; of course, the Java 1.4.1 SDK documents go into a lot more detail. You’ll
need time to get this certificate from Sun. The following steps take you
through the process:
1. Get a Code-Signing Certificate:

• Use the keytool utility to generate a DSA key pair.
• Use the keytool utility to generate a certificate-signing request.
• Send the CSR (Code Signing Request) and other information to

the JCE Code Signing Certification Authority at Sun.
• After receiving the certificate from Sun, import the certificate

using the keytool utility.
2. JAR the provider class (i.e., RichProvider) code using the JAR utility.
3. Sign the JAR (i.e., richprovider.jar) trusted certification with the

certificate from Sun using the jarsigner.
4. Ensure that the JAR (i.e., richprovider.jar) is in the

%JAVA_HOME%\jre\lib\ext path.
• You may install the provider in a different classpath location, but it

may require setting up a separate java.policy file. The default java.
policy file is already set for the above directory by default.

How to Get a Service Provider Certificate

Not understanding a
cipher algorithm in

enough detail could
make misusing the

algorithm worse than not
having an algorithm at all”

“

Application Integration
Desktop Java
Mobility
ASP.NET
VS.NET
JavaServer Faces
SOA
Interoperability
Java Gaming

Application Integration
Desktop Java
Mobility
ASP.NET
VS.NET
JavaServer Faces
SOA
Interoperability
Java Gaming

Addressing:Addressing:

Hynes Convention Center
Boston, MA

Edge2004Edge2004

Contact information: 2 0 1 8 02-3 0 6 9 • events@sys-con.com

Over 200 participating companies will display and demonstrate over 500
developer products and solutions.

Over 3,000 Systems Integrators, System Architects, Developers, and Project
Managers will attend the conference expo.

Over 100 of the latest sessions on training, certifications, seminars, case-studies,
and panel discussions promise to deliver real world benefits, the industry pulse
and proven strategies.

For more information visit
www.sys-con.com

or call
201 802-3069

OWNED BY

PRODUCED BY

ea ndustry
CONSORTIUM

EAST

ARCHITECTING JAVA, .NET, WEB SERVICES,
OPEN SOURCE, AND XML

ARCHITECTING JAVA, .NET, WEB SERVICES,
OPEN SOURCE, AND XML

International Conference & Expo

Development Technologies Exchange
EAST

November 21, 2003
Register By

$400SAVE
Up

To

Full Day Tutorials Targeting
• Java • .NET • XML
• Web Services • Open Source

Conference program available online!
www.sys-con.com/edgeeast2004

Development Technologies Exchange
February 24-26, 2004

Hynes Convention Center, Boston, MA

46 October 2003 www.JavaDevelopersJournal.com

of RC4’s commercial uses include Oracle and wireless tech-
nologies. I’d imagine that’s because of the small and large
sets of data needed in these products.

Unlike a stream cipher, a block cipher uses chunks of
data, a block, and usually 64 bytes to process through the
cipher. If the block ends at less than 64 bytes, the algorithm
pads the remaining block. For data that may be a few bytes,
this may seem like a lot of overhead. For data that’s time-
consuming with a lot of I/O, the breaking up of blocks may
seem to take up a lot of time. The solution to many may be to
use a stream that handles any size data and is quick to
process. Some of the places that a stream cipher may be a
detriment would be using it for document files in which you
wouldn’t want plaintext and ciphertext lengths to match. I
tend to use stream ciphers with stream I/O, especially Java
sockets, when speed is important. Some users of RC4 state
that RC4 is 10 times faster than DES. When using RC4, pay
careful attention to the keys. If the same key is used over and
over again, it could be compromised by constant observation
and, if the key is not adequately randomized, it could be
weak.

When using a cipher in Java, understanding the cipher
itself, like RC4, is only a piece of the puzzle. An understand-
ing about the Java Cryptography Extension (JCE) and service

providers becomes paramount when using any cipher. A
large part of understanding how a provider is accessed
through the provider chain, how to access the provider, and
how the algorithm is used in KeyGenerator and in CipherSpi
is crucial. Understanding these concepts is important
because programmers may be using a service provider with-
out understanding the origin of the cipher they’re using. In
other words, programmers need to understand how to pre-
vent Trojans and backdoors by understanding the origins of
what their code is using.

All the key generators and ciphers in Java are built using
the Service Provider Interface (SPI) layer. The idea of an SPI
layer is to provide vendors with the ability to create their own
algorithms with the use of a common interface. Since Sun
supplies this interface; it allows others to commercially pro-
duce extensions that could work within the 1.4.1 SDK while
not having to be built with the SDK. This article provides the
code necessary to create a provider (code can be downloaded
from www.sys-con.com/java/sourcec.cfm). All providers are
registered with Sun to ensure that Sun knows who is integrat-
ing and interfacing into the 1.4.1 SDK.

Provider
The first step in using a provider is to get the SPI loaded

in the provider chain. One way to load a provider is to place
the provider in the %JAVA_HOME%\jre\lib\security\
java.security file as a line item like security.provider.1=com
.richware.cipher.RichProvider. Another way is to load it at
runtime in code as shown in the com.richware.cipher.Test
RC4Cipher class using the code Security.insertProvider

At(new RichProvider(), 1);. Either way will give a provider
interface that’s defined by its class and position in the
provider chain. Where the provider falls in the chain is also
important. There could be three RC4 cipher algorithms
defined with the alias RC4, but the executing programs will
pick up the first alias in the chain. I defined my provider as
the first, so if there are other RC4 algorithms with the same
alias, mine will be executed, not the others. If hackers place
their provider in the chain while code is executing, it could
give them a doorway to your data.

Using the example class
com.richware.cipher.RichProvider, the provider class is sim-
ple and there are a few things to remember. I declared the
class as a final class so as not to allow the class to be extend-
ed; the class is extended from the java.security.Provider class
shipped with the Java 1.4.1 SDK. The RichProvider registers
information about itself to describe its origins like its name,
version, and info. If a programmer is executing providers and
possibly one that they downloaded, this is important infor-
mation since it allows you to discover the origin of the
provider. A lot of security goes into the provider interface
because the valuable data of an organization that they
encrypt could be sent through the Internet through a rogue
provider.

Another piece of the provider is that it associates aliases
to classes, usually both a KeyGenerator and a Cipher alias
depending on the algorithm. However, this is totally depend-
ent on matching a corresponding key type to the algorithm.
For example, I used the following code:

AccessController.doPrivileged(

new PrivilegedAction() {

public Object run() {

put("Cipher.RC4",

"com.richware.cipher.RichRC4Cipher");

put("KeyGenerator.RC4",

"com.richware.cipher.RichRC4KeyGenerator");

return null;

}

});

This code simply means that when I pass RC4 in a
KeyGenerator, it calls my KeyGenerator service provider code
com.richware.cipher.RichRC4KeyGenerator. It will likewise
call the provider’s corresponding code when I pass RC4 in a
Cipher instance. The code fragment executes this code in a
block as a privileged action, which gets the JVM’s Security
Manager involved. All provider code must be signed in a Java
Archive (JAR) file with a certificate from Sun so that security
providers can possibly be tracked. In my example, when the
richprovider.jar gets loaded, it has to be authenticated with a
trusted certificate. You have to use the keytool to get the
trusted certificate and the jarsigner utility to sign it in the
provider’s JAR file. Take a look at the sidebar “How to Get a

J2
SE

H
O

M
E

J2
E

E
J2

M
E

When using a cipher in Java,
understanding the cipher itself,

like RC4, is only a piece of the puzzle”“

47October 2003www.JavaDevelopersJournal.com

Service Provider Certificate” for a set of simplified steps.
Looking at the steps in the sidebar, it’s obvious that there

are a lot of security provisions and traceability for using Java
JCE providers. It was a lot different in the C++ days. In those
days we just added a Dynamic Link Library (DLL) to the
System32 path in Windows or a library in Unix. However, not
to be preachy about the robustness of Java, you can examine
the origin and execution of the JAR file. For instance, when in
doubt about a JAR file, just move the JAR and isolate the exe-
cution of it to another system to examine. A trace of the JVM
tracing into the JAR could be done to see if the JAR is
Trojaned, but that is another discussion.

When using some of the more native libraries, it becomes
more difficult to trace for Trojans through the libraries
because it requires an understanding of the operating system
that the native calls are integrated within. Some security con-
sulting involves isolating the signatures for Trojans on
libraries stored in the computer. These techniques help in
host-based intrusion detection.

KeyGeneratorSpi
The purpose of the provider is to securely associate the

correct KeyGenerator and Cipher code to the algorithm
being called by the application. Most KeyGenerator code is
responsible for generating a random key. Most of the differ-
ences rely on the key size. The RC4 algorithm allows for a key
size of 1–256 bytes to match up to the size of the S-box. Now
there are export restrictions, so when exporting to other
countries, it may be necessary to limit the key size. You must
contact the Department of Commerce for current export
restrictions.

The code checks the key size in bits and, if it’s the wrong
size, it will throw an exception, otherwise it will generate a

key based on the size. Most of the work is ensuring that the
correct key size, given in bits and generated in bytes, is
returned as a SecretKeySpec class.

Notice in Listing 1 that the SecureRandom class is used to
create the random number key. The SecretKeySpec class is
returned because the key is a secret key. One of the features
of the code is that if you’re not happy with Java’s
SecureRandom class and feel that you can build a better one,
you can extend it and pass it in the KeyGenerator class to use
it instead. A fragment of the RichRC4KeyGenerator code is
provided in Listing 1.

CipherSpi
The CipherSpi is also started from the provider when it

associates the Cipher.RC4 with the com.richware.cipher.
RichRC4Cipher class. The key is generated in the previous
section; now it’s time to encrypt or decrypt the message.
The CipherSpi normally takes in the mode of operation for
the cipher engine, like the operation to encrypt versus
decrypt. In the RC4 algorithm, there’s no difference
between encryption and decryption except for the input
data. When the RC4 engine is initialized, it will first build its
S-box. Many algorithms have multiple S-boxes, but RC4 has
one array of S-boxes from 0 to 255. Listing 2 provides an
example.

The building of an S-box involves manipulating the key
from an initialized S-box to produce a new substitution box
to be used in the RC4 algorithm. Simply put, an S-box is built
from a key and some initialization code like a new key that
cannot be deciphered. The idea is to build an S-box to swap
data from a known index into an unknown index to avoid
Guassian elimination in trying to reverse the algorithm. This
is accomplished by using the random key to define the posi-

48 October 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

tion of the next swap with the index2 variable. The counter
variable, along with the index1 variable, ensures that all the
S-box bytes are swapped at least once during calculations.
The idea is simply to try to avoid any pattern and factoring of
the S-box while having the same key produce the same S-
box.

After the S-box is built from the key, the RC4 algorithm
can be used to encrypt or decrypt the data. Listing 3 demon-
strates the RC4 cipher.

From the code, you can see that each output byte of the
RC4 algorithm is the product of each input byte that is
XORed with an S-box value with the xorIndex. First, an x and
y index is selected. The y is a product of the S-box from the x
index. The two S-boxes are swapped. Then an S-box is select-
ed, a xorIndex that is the product of two other S-boxes that
are symbolized by x and y indexes. Again, the idea is to keep
swapping the S-boxes and index to make the value and loca-
tion difficult to produce by factoring. Finding ways to make
finding patterns and reverse factoring difficult becomes the
guideline for developing ciphers.

Testing the Program
The Test program is straightforward. The com.richware.

cipher.TestRC4Cipher class will load up the RichProvider
class and generate a key of a SecretKeySpec class that is 128
bits with the following:

kg.init(128);

Key secretKey = kg.generateKey();

The program encrypts the message “This is a test, hackers
beware,” that is 31 bytes to a 31 byte encrypted message sim-

ilar to “cUi8DZfy+IQti6xl4Z4FhzRZl2mY2Pa7RmZygn
VXnA==” depending on the key. After encrypting, I decrypt
and compare the output to the original message to see if any-
thing changes. Listing 4 provides the code fragment that
accomplishes this.

Included in the source code is a “-v” option that puts the
test code and provider in a verbose mode for readers who
might want to trace the provider calls and S-box information.
A point to note in Listing 4 is that the same secret key used
for encryption is used for decryption. When building the
richprovider.jar, it won’t work without being signed by the
Sun certification. A “java.security.NoSuchProviderException:
JCE cannot authenticate the provider RichWare” exception
should appear without the certification.

Summary
This article introduces a stream algorithm to help you

understand the proper techniques to produce better and
more robust algorithms in the future. Many standard cipher
algorithms have been around for decades with little to add to
them. You would think that it was due to the fact that they
have not been broken, but some algorithms like DES have
been broken many times. Understanding the strengths,
weaknesses, and how the algorithms work may help us pro-
duce more secure data for our corporations and ourselves.

References
• Schneier, B. (1996). Applied Cryptography, Protocols,

Algorithms, and Source Code in C, Second Edition. John
Wiley & Sons.

• Helton, R., and Helton, J. (2002). Java Security Solutions.
John Wiley & Sons.

Rich Helton has
worked on computer

systems since 1982
and entered the pri-
vate sector in 1990
as a lead computer

architect with
OmniPoint Data
Corporation, the
inventors of PCS.

Since then, he start-
ed consulting as a
security architect,

providing many
organizations with

secure Enterprise
and Network solu-
tions. He is the co-

author of Java
Security Solutions

and the BEA
WebLogic Server

Bible.

richware@
earthlink.net

IINNTT,, iinncc..
www.int.com

49October 2003www.JavaDevelopersJournal.com

Listing 1

protected void engineInit(int i, SecureRandom

_securerandom) {

if ((i % 8 != 0) || (i < 8) || (i > 2048))

throw new

InvalidParameterException(

"Keysize must be multiple of 8,and can only range

from 32 to 448 (inclusive)");

else {

keysize_ = i / 8;

engineInit(_securerandom);

return;

}

}

/**

* Method engineGenerateKey

* @return the RC4 Secret Key

*/

protected SecretKey engineGenerateKey() {

if (random_ == null)

random_ = new SecureRandom();

// Create a temporary storage for the key

byte temp[] = new byte[keysize_];

// Randomly generate the key

random_.nextBytes(temp);

// Return a Key Spec with the Key and Key Type

return new SecretKeySpec(temp, "RC4");

}

}

Listing 2

protected void prepare_key(Key _key)

throws InvalidKeyException {

/* Fill the S-box with the key

* Key Setup */

byte[] userkey = _key.getEncoded();

if (userkey == null)

throw new InvalidKeyException("Null user key");

// Check key length

int len = userkey.length;

if (len == 0)

throw new InvalidKeyException(

"Invalid user key length");

// Reset x and y

x = y = 0;

// Populate the the initial Sbox with 0 through 255

for (int index = 0; index < 256; index++)

sBox[index] = index;

// Initialize variables

int index1 = 0;

int index2 = 0;

int temp;

/* A temporary value will be taken from the S-Box

* that will be executed from 0 to 255.

* The key value is indexed from the length of the

key.

* The S-box indexed from the counter will be

swapped with the S-box

* indexed from the temporary value.

* The swapping will happen until all the S-boxes are

walked from 0 to 255.

* If the same key is passed through the Sbox, it

will generate the same Sbox.

*/

for (int counter = 0; counter < 256; counter++) {

index2 =

((userkey[index1] & 0xFF) + sBox[counter] +

index2)

& 0xFF;

// Swap the byte

temp = sBox[counter];

sBox[counter] = sBox[index2];

sBox[index2] = temp;

index1 = (index1 + 1) % len;

}

}

Listing 3

protected void rc4(byte[] in, int inOffset, int inLen,

byte[] out, int outOffset) {

/* The byte is XORed with the plaintext to produce

the ciphertext

* The byte is XORed with the ciphertext to produce

the plaintext

* The algorithm is symmetric, meaning this function

will work for both

* encryption and decryption

*/

int xorIndex;

/* The byte is XORed with the plaintext to produce

the ciphertext

* The byte is XORed with the ciphertext to produce

the plaintext

* The algorithm is symmetric, meaning this function

will work for both

* encryption and decryption

*/

int temp;

for (int i = 0; i < inLen; i++) {

x = (x + 1) & 0xFF;

y = (sBox[x] + y) & 0xFF;

temp = sBox[x];

sBox[x] = sBox[y];

sBox[y] = temp;

xorIndex = (sBox[x] + sBox[y]) & 0xFF;

out[outOffset++] = (byte) (in[inOffset++]

^ sBox[xorIndex]);

}

}

Listing 4

Cipher cipher =

Cipher.getInstance("RC4", "RichWare");

Cipher cipher2 =

Cipher.getInstance("RC4", "RichWare");

// Init the Cipher with Key, mode and random genera-

tor

cipher.init(Cipher.ENCRYPT_MODE, secretKey, _random

);

// Encrypt the message with the secret key.

byte[] encryptedMessage =

cipher.doFinal(messageBytes, 0,

messageBytes.length);

// Init the Cipher2 with Key, mode and random gener-

ator

cipher2.init(Cipher.DECRYPT_MODE, secretKey, _random

);

// Decrypt the message with the secret key.

byte[] decryptedMessage =

cipher2.doFinal(encryptedMessage, 0,

encryptedMessage.length);

String decryptedMessageString =

new String(decryptedMessage, "UTF8");

/* Check that the decrypted message and the origi-

nal

* message are the same.

*/

if (decryptedMessageString.equals(message))

System.out.println("\nTest succeeded.");

else

System.out.println("\nTest failed.");

50 October 2003 www.JavaDevelopersJournal.com

t a training session I recently attended,
a presenter mentioned that his cell
phone crashes whenever he runs a
simple MIDlet that he wrote. While it
may have been inevitable that poor-
quality environments would make it
onto J2ME platforms, it’s still distress-
ing to see some J2ME development
proceeding down the trail blazed by
the megacorp in Redmond.

Now I am not one of those who
despise Microsoft. Microsoft is not
inherently evil, and both good and bad
have come out of it, as is true of just
about any corporate entity. But I do
feel that Microsoft’s sins have been
egregious in the area of software quali-
ty, and I fear that it has inured us to
accept software of far lesser quality
than we should accept.

When your desktop PC offers up
the blue screen of death, you may be
annoyed and curse the denizens of
Redmond, but most people have come
to accept occasional freezes and splats
as one of the costs of computing (or, at
least, the cost of computing with
Windows). But there’s no reason we
should carry those diminished expec-
tations to mobile devices.

Because the primary purpose of PCs
is computing, it may be easy to ration-
alize software failures as the price you
pay, but the primary purpose of cell
phones is communication. For this rea-
son – or from a different perspective,
because anything that impedes making
and receiving calls reduces revenue –
most cell phone manufacturers and
network providers have historically
been very restrictive about what, if any,
third-party software they allow on their
handsets. If customers can’t make or
receive calls, they’ll be more inclined to
switch carriers, and they’ll rarely make
a distinction as to whether it was the
hardware, the software, or the network
that was at fault.

This mentality contrasts sharply with
that of the other major platform for
J2ME applications, PDAs, which have
from the beginning been first and fore-
most about applications. Since the early
Palm Pilots (and their precursors), the
modus vivendi with PDAs has been to

download applications; so where cell
phones restricted customer deviation
from a defined configuration, PDAs
embraced it. Consequently, PDA manu-
facturers and users may accept the occa-
sional crash, much like they do on PCs,
as a risk worth taking. To what degree are
we willing to trade off the reliability of
cell phones for the convenience that
downloadable applications add?

Shouldn’t we first ask whether we
need to make significant trade offs? Is it
not feasible to architect the KVM to be,
if not bulletproof, at least robust
enough to prevent all but the most
onerous and insidious programming
errors from significantly compromising
the reliability of the platform? Or is it
that we could, but it’s not considered
cost-effective to invest the extra effort
to do so? Or is it time-to-market that
trumps the delivery of quality software?

Consider some of the vulnerabilities
that poor quality software could expose
us to as cell phones become more pow-
erful. You’ll have financial and other
personal information on your smart
phone, but will it have enough comput-
ing capability to support virus checker,
or firewall software powerful enough to
thwart sophisticated attacks? Your cell
phone’s mobility combined with
Bluetooth and WiFi capabilities will
allow it to be more promiscuous than a
desktop or a less-mobile laptop, joining
and parting ways with numerous
hotspots as you travel around. Does
ubiquitous computing mean ubiqui-
tous targets for compromised security?

Many efforts are afoot to address
these concerns, and the walled-garden
security model of the KVM is a good
foundation. But as with building a
house, a great blueprint counts for little
if the construction is shoddy. What can
we do? As developers we can promote
high quality in the software we write,
and provide informed voices in discus-
sions of the issues and in the develop-
ment of specifications. As consumers we
can vote with our pocketbook, eschew-
ing OEMs and network providers who
offer substandard services. But ultimate-
ly it’s the marketplace that will deter-
mine the quality provided.

Quality Is Job n?

A

J2ME INSIGHT

Quality Is Job n?

At a training session I recently

attended, a presenter mentioned

that his cell phone crashes

whenever he runs a simple

MIDlet that he wrote. While it

may have been inevitable that

poor-quality environments would

make it onto J2ME platforms, it’s

still distressing to see some J2ME

development proceeding down

the trail blazed by the megacorp

in Redmond.
Glen Cordrey is a software

architect working in the
Washington, DC, area. He’s been

using Java for five years,
developing both J2EE and J2ME

applications for
commercial customers.

glencordrey@sys-con.com

50

Glen Cordrey
J2ME Editor

H
O

M
E

J2
E

E
J2

SE
J2

M
E

52The Location
API

It’s called “Get It Now.SM” And it’s the name Verizon Wireless, the nation’s largest wireless carrier, has chosen for its new nationwide,
BREW-enabled service. Dozens of BREW™ applications are now heading directly from the hands of developers into the hands of
consumers with the help of the BREW Distribution System – and the financial rewards for these developers
are returning just as fast. And as more carriers prepare to launch their BREW-enabled services, BREW
applications such as games, email, news, weather, stock trades, position location and ringers
are finding a potential market of literally millions upon millions of users. If you aren’t developing
for BREW, you aren’t developing to your potential. To get started, visit www.qualcomm.com/brew/jdj.

MILLIONS OF

POTENTIAL CUSTOMERS.

ANY TAKERS?

Games

Navigation

Ringers

©2003 QUALCOMM Incorporated. All rights reserved. QUALCOMM is a registered trademark of QUALCOMM Incorporated. BREW and Customize. Personalize. Realize. are trademarks of QUALCOMM Incorporated. Get It Now is a service
mark of Verizon Wireless. JAMDAT and JAMDAT Mobile are trademarks or registered trademarks of JAMDAT Mobile, Inc. All rights reserved. ©2003 JAMDAT Mobile Inc. All other trademarks are the property of their respective owners.

52 October 2003 www.JavaDevelopersJournal.com

he Location API (JSR 179) was accepted by the Executive
Committee for Micro Edition of the Java Community Process
in June 2003. It provides an abstract interface for access to
location-based information, such as the current coordinates
of the mobile terminal independent from the underlying
positioning method used.

Mobile Positioning 101
Mobile positioning in general is the process of determin-

ing the location of a mobile terminal; the result of this
process is the mobile location, which is the current location
in terms of coordinates of the mobile terminal. The mobile
location can be more or less accurate, depending on the
mobile positioning method used.

The large number of existing methods that can be used
for mobile positioning can be divided into two broad cate-
gories: network-based and handset-based. The first category,
network-based positioning, is made up of many methods
that reach from relatively simple COO (cell of origin) meth-
ods to more complex methods like TDOA (Time Difference of
Arrival). The latter category, the handset-based positioning
methods, allows locating the terminal without the help of the
mobile communication network (for example, the GSM or
CDMA network). GPS – the Global Positioning System – is the
most prominent member of that category.

Besides those two categories, there are also hybrid meth-
ods that unite network-based and handset-based methods.
AGPS (Assisted GPS) is one, where you try to speed up the
initialization time of the GPS receiver by using information
coming from the mobile network.

The following sections explain the most common posi-
tioning methods in more detail. Figure 1 provides an
overview of the described methods.

Handset-Based Methods
• Global Positioning System (GPS): This system was devel-

oped by the U.S. Department of Defense and is still main-
tained by them. Originally developed only for the military,
today this positioning system is widely used by civilians.
The system is based on signals that are transmitted from
24 satellites that GPS receivers on earth use to calculate
the current location. Each GPS receiver needs to be in con-

tact with four
satellites at the
same time to
be able to
determine the
user’s longitude,
latitude, and altitude.
Among the advantages are the rela-
tively exact positioning result (close to 10–30 meters) as
well as the possibility of determining the altitude at which
the terminal is located. A serious disadvantage is the lack
of reception of GPS signals within buildings, which can
make the positioning process impossible.

• Enhanced Observed Time Difference (E-OTD): This
method is often referred to as the opposite of the TOA
(Time of Arrival) method. Instead of measuring the time
differences of signals that are transmitted from the termi-
nal to the base station, the terminal calculates the loca-
tion. Therefore, special software has to be installed in the
mobile terminal. In addition, so-called “Location
Measurement Units” have to be installed at each base sta-
tion. The accuracy of E-OTD is relatively high, although
the best results that are close to GPS can only be expected
in urban areas, where many GSM cells are available.

• Subscriber Identity Module Toolkit (SIM): Another hand-
set-based positioning method is via the SIM Toolkit. The
STK is an API that allows communication with the SIM
smart card, which many mobile phones have from appli-
cations that were installed on the handset. The quality can
be as bad as the COO method, but can also be improved
by some algorithms that are stored on the SIM and by
some extra features that are provided by the network.

Network-Based Methods
• Cell of Origin (COO): COO is the easiest and most common

method, but also the most inaccurate one. The network
determines only the cell from which the user is placing a
call or initiating a data transfer and can determine the
location based on the known locations for the base sta-
tions of the network. Interestingly, this method is already
sufficient for most location-based services, and additional
calculations like Timing Advance (TA) can further enhance

T

H
O

M
E

J2
E

E
J2

SE
J2

M
E

3-Pack
Pick any 3 of our
magazines and save
up to $27500

Pay only $175 for a
1 year subscription
plus a FREE CD
• 2 Year – $299.00
• Canada/Mexico – $245.00
• International – $315.00

6-Pack
Pick any 6 of our
magazines and save
up to $35000

Pay only $395 for a
1 year subscription
plus 2 FREE CDs
• 2 Year – $669.00
• Canada/Mexico – $555.00
• International – $710.00

9-Pack
Pick 9 of our
magazines and save
up to $40000

Pay only $495 for a
1 year subscription
plus 3 FREE CDs
• 2 Year – $839.00
• Canada/Mexico – $695.00
• International – $890.00

RECEIVE
YOUR DIGITAL

EDITION
ACCESS CODE
INSTANTLY

WITH YOUR PAID
SUBSCRIPTIONS

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

A LIMITED TIME SAVINGS OFFER FROM SYS-CON Media

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

Subscribe Online Today www.sys-con.com/2001/sub.cfm

AND SAVE UP TO $400 AND
RECEIVE UP TO 3 FREE CDs!

■ Web Services Journal
U.S.- Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ Java Developer’s Journal
U.S. - Two Years (24) Cover: $144 You Pay: $89 / Save: $55 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $49.99 / Save: $22
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ Linux Business & Technology
U.S. - Two Years (24) Cover: $143 You Pay: $79.99 / Save: $63 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ .NET Developer’s Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ XML-Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ ColdFusion Developer’s Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189 / Save: $75 + FREE $198 CD
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

■ WebLogic Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

■ Wireless Business & Technology
U.S. - Two Years (24) Cover: $144 You Pay: $89 / Save: $55 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $49.99 / Save: $22
Can/Mex - Two Years (24) $192 You Pay: $139 / Save: $53 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $79.99 / Save: $16
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ PowerBuilder Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

■ WebSphere Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

■ 3-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

■ 6-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

■ 9-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

•Choose the Multi-Pack you want to order by checking
next to it below. •Check the number of years you want to
order. •Indicate your location by checking either U.S.,
Canada/Mexico or International. •Then choose which
magazines you want to include with your Multi-Pack order.

TO
ORDER

Pick a 3-Pack, a 6-Pack or a 9-Pack

54 October 2003 www.JavaDevelopersJournal.com

the quality of positioning.
• Angle of Arrival (AOA): This method uses special equip-

ment that has to be installed at the base stations to deter-
mine the angle of arrival for the radio signals. With some
basic geometric calculations, you can then determine the
location of the user with only two base stations receiving
its signal.

• Time Difference of Arrival (TDOA): This method uses the
differences of arrival for the radio signals at the base sta-
tions (from the mobile terminal). A minimum of three
receiving base stations is required to calculate the location
of the user.

• Location Pattern Matching (LPM): This complex method
analyzes the radio signals and compares them to patterns
saved in a database. These patterns include signal reflec-
tions and echoes. When a pattern is recognized, the loca-
tion of the user can be identified. This method can be used
only in urban areas, where these signals often occur. In
these areas the quality might be better than using other
methods; unfortunately this method is not suitable as a
general method for rural areas.

Hybrid Methods
• Assisted GPS (AGPS): AGPS uses information from the net-

work to more quickly determine the position of the four
satellites that it needs to listen to. The network cell distrib-
utes the locations of those satellites and can drastically
reduce the initialization time that a normal GPS receiver
needs. In addition, this method saves battery power as the
GPS receiver is only activated on a usage basis.

Other methods of mobile positioning include short-range
beacon methods such as Bluetooth or IrDA. Those methods
can be used to locate users indoors and the quality of service
is good. On the other hand, the setup of those networks is a
highly complex task as a new infrastructure is needed and
mobile terminals have to be updated as well.

The Location API
Access to the current location of the terminal is of special

value for mobile phones and embedded systems. The
Location API allows us to access this kind of information
through a standard interface. The underlying mobile posi-
tioning method does not change the usage of the API but, of
course, the quality and amount of information that can be
gathered can vary tremendously.

This JSR is led by Kimmo Löytänä (of Nokia Corporation)
and has been accepted in unison by the Executive
Committee for Micro Edition, showing strong industry-wide
support for this API, in June 2003. The Location API (package
javax.microedition.location) needs the CLDC 1.1 as an
underlying configuration, as support for floating point num-
bers is necessary for values such as the longitude and lati-
tude. Furthermore, the utilization of the security concept of
MIDP 2.0 is recommended in the JSR. If an application wants
to make use of the Location API, the user will be prompted
for the permissions. He or she can decide to give those per-
missions to use the Location API on a per-usage basis for the
duration of the current session or in general. This inhibits the
abuse of this API, as every location request might involve
costs to the user.

Figure 2 provides an overview of the main classes
involved in the Location API.

The LocationProvider is a Singleton class that is the start-
ing point for a request to the location service. The method
getInstance(Criteria c) receives a criteria object as a parame-
ter to determine the needs of the location request (for exam-
ple, desired accuracy, whether to include address informa-
tion, etc.).

Criteria can generally be divided into hard and soft crite-
ria. Hard criteria are:
• Maximum cost per request
• Should the speed be determined?
• Do we need address information or are the coordinates

sufficient?

Soft criteria are:
• The horizontal/vertical accuracy of the positioning process
• The degree of power consumption tolerated
• The maximum response time

In addition to blocking a request by using the method
getLocation() of the class LocationProvider, there’s also a
nonblocking LocationListener that can be registered at the
LocationProvider. The LocationListener will then receive the
current location information at regular intervals.

Orientation data can also be gathered directly from the
LocationProvider class and includes the pitch and roll as well
as the compass orientation of the terminal.

The response from the LocationProvider is an object of
the class Location, which encapsulates the location informa-
tion. It includes a Coordinates and AddressInfo object.
Coordinates provide information, such as the longitude/lati-
tude values of the location. AddressInfo provides additional
information like the name of the street, city, etc., if this infor-
mation has been specified by the criteria and is available.

Landmarks (not illustrated) allow you to classify locations
and save them to a landmark database on the mobile hand-
set. The classifications could, for example, include movie
theaters, ATMs, or museums. In addition, personal land-
marks such as the home location can be saved to this data-
base. The database uses the RMS (Record Management

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Figure 1 Positioning methods

“The Location API
simplifies access to
the results of mobile
positioning methods”

56 October 2003 www.JavaDevelopersJournal.com

H
O

M
E

J2
E

E
J2

SE
J2

M
E

System) that is part of the underly-
ing profile, the MIDP.

That’s the theory. Please keep in
mind that the actual location infor-
mation might not include the street
name or the orientation of the
mobile terminal. The accuracy will
vary as well depending on the
method used. Although technically
feasible with certain handsets (for
example, AGPS-enabled devices
from Motorola), the quality of infor-
mation will not always be that good. This API
has been designed with the future in mind. As the position-
ing methods evolve, the accuracy and the amount of infor-
mation supplied by this API will improve and increase.

The example in Listing 1 is taken from the specification
and demonstrates the usage of the API.

Here comes the million-dollar question: When will this
API be available in mass-market Java phones? Good ques-
tion, I don’t think we’ll see the API in a consumer device by
the end of this year. The Roadmap 1 (JSR 185 – Java
Technology for the Wireless Industry) does not include the
API in its recommendation, but the Location API seems to be
a hot candidate for the next version of this roadmap. If it will
be added to the roadmap, it will most likely be an optional
API like the current Multimedia API.

Location-Based Services (LBS)
The Location API will allow the implementation of vari-

ous location-based services, which can generally be split up
into these categories:
• Public security: For determining the user’s location in case

of an emergency, etc.
• Tracking: For tracking fleet vehicles, people, etc.
• Traffic monitoring: For the fast recognition of jammed

highway zones, etc.
• Location-based information: Navigation services, city-

sightseeing services of mobile yellow pages

A location-based service from Jentro AG, Munich,
Germany, will serve as an example. Jentro AG’s navigation
solution (see Figure 3) was introduced during one of the gen-
eral sessions at the recent JavaOne conference in San
Francisco. Besides a Java-capable mobile phone, the entry
version needs only a GPS adapter to turn the mobile phone
into a navigation solution. The MIDlet communicates using

the serial port with the GPS
adapter and sends this informa-
tion via the MIDP’s Generic
Connection Framework (GCF) to
the server. The server then calcu-
lates the routing information
between the start and end point
and transmits this information to
the mobile client. Although
Jentro currently does not use the
Location API (nor the Multimedia
API), as those APIs become avail-

able in mainstream phones Jentro will
consider the switch toward those APIs as it speeds up the
development of new services.

Conclusion
The Location API simplifies access to the results of mobile

positioning methods and allows mobile Java applications to
use the location information via standard APIs.

Applications that use this API are more likely to occur in a
professional environment first, for example, for fleet man-
agement. A developer can target a specific device and a spe-
cific network that supports the level of accuracy that the
application needs.

As for the mass market, the differences in mobile posi-
tioning quality that is likely to occur because of the different
underlying mobile positioning methods used will make it
more difficult to design applications that use mobile posi-
tioning information.

The JTWI 2.0 will hopefully include the Location API as an
optional API and provide a clear roadmap for this API. As a
developer you don’t have to wait until the Location API is
available to use mobile location information. This informa-
tion can be accessed using a GPS adapter (via serial inter-
face) and proprietary APIs. As soon as the Location API is
available, switch to using the Location API, as it will speed up
new location-based services development and does not lock
you into proprietary APIs or solutions.

References
• www.mobilein.com/mobile_positioning.htm
• www.cursor-system.com/products_classic.asp
• www.911dispatch.com/911_file/aoa.html
• www.911dispatch.com/911_file/tdoa.html
• www.911dispatch.com/911_file/lpm.html
• http://jcp.org/aboutJava/communityprocess

/first/jsr179/index.html
• www.umtsworld.com/technology/lcs.html

Sven Haiges
(www.svenhaiges.de)

is currently completing
degrees in computer
science and business
administration at the

University of
Furtwangen, Germany,

and technology man-
agement (MBA) at

Simon Fraser
University in

Vancouver, Canada. As
a specialist in the Java

programming lan-
guage, he combines

knowledge of both
server-side and client-

side Java, especially
for mobile Java clients.

Sven recently pub-
lished his first book

about the Struts open
source Web applica-

tion framework in
Germany.

sh@flavor.de

Listing 1

try {
// Creation of a Criteria-Object
Criteria cr = new Criteria();
// Adjusting the horizontal accuracy to 500 meters
// besides that, no standard values are changed
cr.setHorizontalAccuracy(500);
LocationProvider lp = LocationProvider.getInstance(cr);
// Request the location, we are willing to wait for 60
seconds
Location l = lp.getLocation(60);
Coordinates c = l.getQualifiedCoordinates();
if (c != null) {
// use the information...
...
}
} catch (LocationException e) {
// Display an error message
...
}

Figure 2 Location API main classes

Figure 3 Jentro AG Navigation Solution (GPS adapter is at the

bottom of the phone)

The Leading Magazine
for Enterprise and
IT Management

SAVE 30%
OFF!

REGULAR ANNUAL COVER PRICE $71.76

YOU PAY ONLY

$4999
12 ISSUES/YR

*OFFER SUBJECT TO CHANGE WITHOUT NOTICE

SUBSCRIBE
TODAY!

WWW.SYS-CON.COM
OR CALL

1-888-303-5282

LinuxWorld
Magazine

There is no escaping the penetration of Linux into the corporate world. Traditional models are being

turned on their head as the open-for-everyone Linux bandwagon rolls forward.

Linux is an operating system that is traditionally held in the highest esteem by the hardcore or geek

developers of the world. With its roots firmly seeded in the open-source model, Linux is very much born

from the “if it’s broke, then fix it yourself” attitude.

Major corporations including IBM, Oracle, Sun, and Dell have all committed significant resources and

money to ensure their strategy for the future involves Linux. Linux has arrived at the

boardroom.

Yet until now, no title has existed that explicitly addresses this new hunger for information from

the corporate arena. LinuxWorld Magazine is aimed squarely at providing this group with the knowledge

and background necessary to make decisions to utilize the Linux operating system.

Look for all the strategic information required to better inform the community on how powerful an alternative Linux can be. LinuxWorld Magazine does not

feature low-level code snippets but focuses instead on the higher logistical level, providing advice on hardware, to software, through to the recruiting of trained

personnel required to successfully deploy a Linux-based solution. Each month presents a different focus, allowing a detailed analysis of all the components that

make up the greater Linux landscape.

FOR ADVERTISING INFORMATION:

CALL 201 802.3020 OR
VISIT WWW.SYS-CON.COM

Regular features

include:

Advice on Linux Infrastructure

Detailed Software Reviews

Migration Advice

Hardware Advice

CEO Guest Editorials

Recruiting/Certification Advice

Latest News That Matters

Case Studies

www.LinuxWorld.com

LINUXWORLD® IS THE REGISTERED TRADEMARK OF INTERNATIONAL DATA GROUP, INC. SYS-CON IS USING THE MARK PURSUANT TO A LICENSE AGREEMENT FROM IDG
The World’s Leading i-Technology Publisher

58 October 2003 www.JavaDevelopersJournal.com

hen Sun was designing Java, it omitted
multiple inheritance – or more precisely
multiple implementation inheritance –
on purpose. Yet multiple inheritance can
be useful, particularly when the poten-
tial ancestors of a class have orthogonal
concerns. This article presents a utility
class that not only allows multiple
inheritance to be simulated, but also has
other far-reaching applications.

Have you ever found yourself want-
ing to write something similar to:

public class Employee extends Person,

Employment {

// detail omitted

}

Here, Person is a concrete class that
represents a person, while Employment
is another concrete class that represents
the details of a person who is employed.
If you could only put them together, you
would have everything necessary to
define and implement an Employee
class. Except in Java – you can’t.
Inheriting implementation from more
than one superclass – multiple imple-
mentation inheritance – is not a feature
of the language. Java allows a class to
have a single superclass and no more.

On the other hand, a class can
implement multiple interfaces. In other
words, Java supports multiple interface
inheritance. Suppose the PersonLike
interface is:

public interface PersonLike {

String getName();

int getAge();

}

and the EmployeeLike interface is:

public interface EmployeeLike {

float getSalary();

java.util.Date getHireDate();

}

This is shown in Figure 1.
If Person implements the Person-

Like interface, and Employment imple-
ments an EmployeeLike interface, it’s
perfectly acceptable to write:

public class Employee implements PersonLike,

EmployeeLike {

// detail omitted

}

Here there is no explicit superclass.
Since we are allowed to specify at most
one superclass, we could also write:

public class Employee extends Person imple-

ments PersonLike, EmployeeLike {

// detail omitted

}

We would need to write the imple-
mentation of EmployeeLike, but the
implementation of PersonLike is taken
care of through the Person superclass.
Alternatively we might write:

public class Employee extends Employment

implements PersonLike, EmployeeLike{

// detail omitted

}

This is the opposite situation: the
EmployeeLike interface is taken care of
through the Employment superclass,
but we do need to write an implemen-
tation for PersonLike.

Java does not support multiple
implementation inheritance, but does
support multiple interface inheri-
tance. When you read or overhear
someone remark that Java does not
support multiple inheritance, what is
actually meant is that it does not sup-
port multiple implementation inheri-
tance.

Stay Adaptable
Suppose then that you have the con-

crete implementations Person, which
implements the PersonLike interface, and
Employment, which implements the
EmployeeLike interface. Although only
one can be selected to be the superclass,
it would be useful to somehow exploit the
other implementation.

The easiest way to do this in Java is
by applying the (Object) Adapter pat-
tern. If we make Person the superclass,
we can use Employment using an object
adapter held within the employee:

public class Employee extends Person imple-

ments PersonLike, EmployeeLike {

private EmployeeLike employment = new

Employment();

public float getSalary() { return

employment.getSalary(); }

public java.util.Date getHireDate() {

return employment.getHireDate(); }

}

For each method of EmployeeLike,
the employee delegates to the object
adapter. This helps motivate the deci-
sion as to whether Person or
Employment should be the superclass;
choose the one with the most methods
as the superclass so there will be less
manual delegation code to write when
dealing with the other interface.

The Adapter pattern is a fine way to
support multiple interface inheritance
while exploiting two concrete imple-
mentations. Indeed, it’s more often the
case that an anonymous inner class is
used as the object adapter, allowing
customization of behavior with respect
to the context (of being embedded
within a subclass).

However, writing that delegation
code is tedious, especially if both inter-
faces to be implemented have many
methods in them. In many cases, we
can get Java to do the delegation to the
would-be superclass(es) automatically.

Enter Dynamic Proxies
Dynamic proxies were introduced

Multiple Inheritance
in Java
Of diamonds and dynamic proxies Dan Haywood

W

DELEGATORFACTORY

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Figure 1 The PersonLike and EmployeeLike interfaces

59October 2003www.JavaDevelopersJournal.com

into Java in J2SE v1.3. Part of the
java.lang.reflect package, they allow
Java to synthesize a class at runtime.
The methods supported by this synthe-
sized class are specified by the interface
(or interfaces) that it implements. The
implementation is taken care of
through an invocation handler
(java.lang.reflect.InvocationHandler)
that is handed an object representing
the method being invoked (java.lang.
reflect.Method). As you can see,
dynamic proxies use heavy doses of the
Java Reflection API.

This then is the key to simulating
multiple implementation inheritance
within Java. We can write a custom
InvocationHandler that is constructed
with a set of classes; these represent the
superclasses of the subclass to be syn-
thesized. The interface(s) of our sub-
class will be the union of the interfaces
implemented by these superclasses.
Our InvocationHandler will instantiate
instances of these superclasses so that
it can delegate to them. We then
arrange it so that the invocation han-
dler, on being given a method to be
invoked, will reflectively invoke the
method on the appropriate superclass
object instance. (There must be one;
remember the subclass’s interface is
derived from the superclass’s, so at
least one superclass must be able to
handle the method invocation.)

To make things simple, we can
make our InvocationHandler imple-
mentation also return the proxy. In
other words, the invocation handler
can act as a factory, able to return
instance(s) of the synthesized subclass
that will delegate to the superclass
instances. We call our invocation han-
dler implementation DelegatorFactory
for this reason:

// imports omitted

public final class DelegatorFactory

implements InvocationHandler {

public Object getObject() {

return Proxy.newProxyInstance(

this.getClass().getClassLoader(),

getSupportedInterfaces(),

this);

}

}

// code omitted

}

The supported interfaces of the
resultant object are derived from the
superclasses provided in the
DelegatorFactory’s constructor:

// imports omitted

public final class DelegatorFactory imple-

ments InvocationHandler {

public DelegatorFactory(final Class[]

ancestors) {

// implementation omitted

}

// code omitted

}

There is more to DelegatorFactory
as we shall soon see, but we now have
enough to simulate multiple imple-
mentation inheritance. Going back to
the question first posed, instead of:

public class Employee extends Person,

Employment {

// detail omitted

}

followed (presumably) by:

Employee employee = new Employee();

We can instead write:

Object employee =

new DelgatorFactory(

new Class[] {

Person.class,

Employee.class

}

).getObject();

Although the syntax is somewhat
different, the same essential informa-
tion is being provided. That is, the con-
crete implementations are provided in
Person and in Employment. This object
will use the implementation of Person
if invoked as a PersonLike, and the
implementation of Employment if
invoked as an EmployeeLike:

((PersonLike)employee).getAge();

((EmployableLike)employee).getHireDate();

How Convenient
In the above example, the casts are

necessary because the getObject()
method of DelegatorFactory can only
return a reference of type java.lang
.Object. But the clunkiness arises
because our original aim of defining
the Employee class with two concrete
superclasses actually does something
else as well:

public class Employee extends Person,

Employment {

// detail omitted

}

Not only does this indicate that the
implementation of Employee should be
based on that of its superclasses, it also

defines Employee as a type. In other
words, it’s then possible to write:

Employee employee;

What is missing in our dynamic
proxy solution is this definition of type.
Let’s first do that in the usual way. As
shown in Figure 2, we don’t need to use
a class though; an interface is suffi-
cient.

As code, this is simply:

public interface Employee extends

PersonLike, EmployeeLike { }

There is no detail omitted here; this
is our complete definition. Note that
Employee is now an interface and not a
class.

The following will not work, however:

Employee employee =

(Employee)

new DelegatorFactory(

new Class[] {

Person.class,

Employment.class

}

).getObject();

This is because the only interfaces
implemented by the dynamic proxy
returned by getObject() are PersonLike
and EmployableLike. No matter that
logically the Employee interface does
not require any additional implementa-
tion from our dynamically created
object; Employee is not an interface
that we can cast to.

However, DelegatorFactory does
provide an alternative constructor:

Employee employee =

(Employee)

new DelegatorFactory(

new Class[] {

Person.class,

Employment.class

},

Employee.class

).getObject();

Note the new second argument
(Employee.class) to the constructor.
Casting the object returned from
getObject() to Employee will now work.
Behind the scenes, the Delegator-
Factory simply adds this interface to the
set of those to be implemented by the
dynamic proxy. Note that Delegator
Factory takes this interface object on
trust: there is no validation that the
interface doesn’t introduce any new
methods that are not already present in
the interfaces of the superclasses.

60 October 2003 www.JavaDevelopersJournal.com

Initializing the Superclasses
In “regular” Java, if a superclass does

not provide a no-arg constructor, it’s
necessary for the subclass to correctly
initialize the superclass using construc-
tor chaining. Normally this is done by
including the superclass’s constructor’s
argument(s) in the subclass’s construc-
tor’s argument(s), and then passing them
up the class hierarchy using super().

The facilities shown in Delegator-
Factory thus far do not support this.
The DelegatorFactory is given a list of
superclasses, and then instantiates an
instance of each (to delegate to) using
java.lang.Class.newInstance(). This
requires a public no-arg constructor to
exist.

If the would-be superclass does not
offer a public no-arg constructor, the
DelegatorFactory should be instantiat-
ed using a different constructor that
takes preinstantiated superclass
instances:

Person person = new Person("joe", 28);

Employment employment =

new Employment(someCalendar.getTime(),

30000);

Employee employee =

(Employee)

new DelegatorFactory(

new Object[] {

person, employment

},

Employee.class

).getObject();

If the would-be superclass does not
have a public constructor, or is
abstract, a custom subclass (probably
an anonymous inner class) should be
instantiated and used instead.

Dealing with Diamonds
Typically, multiple implementation

inheritance is used when the super-
classes have orthogonal concerns.
Certainly this is the case with
PersonLike and EmployeeLike, and
each method is unambiguous as to
which ancestor it relates to.

However, sometimes there may be a
common super-interface in the inter-
faces implemented by the “superclass-
es.” For example, suppose we have the
concrete class, Car, which implements
Driveable, the Boat class, which imple-
ments Sailable, and both Driveable and
Sailable extend from Steerable. Since
we want to use both Car and Boat to
define a new subclass, we will also
introduce a convenience interface,
AmphibiousCar (see Figure 3).

The steer() method of Steerable is
used to alter the bearing (0 to 359
degrees) of the steerable object. The
getBearing() method, of course, should
return this bearing.

For simplicity, the drive() method of
Driveable and the sail() method of
Sailable return a suitable string indicat-
ing the current bearing. Invoking
drive() might return a string such as:

driving at bearing 30 degrees.

From what we currently know, we
would create an amphibious car object
using:

AmphibiousCar ac =

(AmphibiousCar)

new DelegatorFactory(

Class[] {

Car.class, Boat.class

}).getObject();

What happens if we invoke the
steer() method on our new amphibious
car ac? Should the invocation handler
delegate to the Car superclass object or

the Boat? The default behavior is to del-
egate to the first matching object.
Hence, we will get:

ac.steer(30);

System.out.println(ac.drive());

// prints "driving at bearing 30 degrees"

System.out.println(ac.sail());

// prints "sailing at bearing 0 degrees"

The Boat superclass component of
our class never knew that the bearing
had changed.

It’s this kind of problem that per-
suaded the Java language designers to
exclude multiple implementation inher-
itance. This is too large an area to cover
in this article, but what we have here is
an example of part of the so-called “dia-
mond” problem, where there is a com-
mon ancestor. You can see the diamond
in the interfaces: Steerable, Driveable,
Sailable, and Amphibious-Car.

The DelegatorFactory utility deals
with the diamond problem by allowing
you to specify the invocation behavior
to the delegate superclasses as a plug-
gable strategy (an example of the
Strategy pattern). The strategy is
defined by the InvocationStrategy
interface. The default strategy
(InvokeFirstOnlyStrategy) is to invoke
the first ancestor superclass that can
handle the method. However, in the
case of the diamond, what is required
is that both ancestors need to handle
the method. The InvokeAllStrategy
handles this. If the method being
invoked has a nonvoid return type, the
return value from the first ancestor is
returned. The two strategies are shown
in Figure 4.

The invocation strategy can either
be set after the DelegatorFactory has
been instantiated, or can be set
through (yet another) overloaded con-
structor. Hence our amphibious car
should be created using:

AmphibiousCar ac =

(AmphibiousCar)

new DelegatorFactory(

Class[] {

Car.class, Boat.class

},

new InvokeAllStrategy()

).getObject();

This time, we get:

ac.steer(30);

System.out.println(ac.drive());

// prints "driving at bearing 30 degrees"

System.out.println(ac.sail());

// prints "sailing at bearing 30 degrees"

DELEGATORFACTORY
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Figure 3 The AmphibiousCar interface creates a diamond

Figure 2 Employee unifies the two interfaces

61October 2003www.JavaDevelopersJournal.com

The InvokeFirstOnlyStrategy and
InvokeAllStrategy are not the only
strategies available (indeed we shall see
one more shortly); however, they
should work for most situations.

If a custom invocation strategy is
required, it can be written by imple-
menting the InvocationStrategy inter-
face:

public interface InvocationStrategy {

Object invoke(final List ancestors,

final Method method,

final Object[] args)

throws Throwable

}

The ancestors parameter is an
immutable list of the object instances
representing the superclass. The
method parameter represents the
Method being invoked, and the args
parameter contains the arguments to
that Method. A typical invocation strat-
egy would likely call method.invoke(…)
somewhere within its implementation,
with the first argument (the object
upon which to invoke the method)
being one of the ancestors.

We shall look at some applications
of custom invocation strategies shortly.
For now, though, an adaptation of
InvokeAllStrategy might be to return
the average return value of all ances-
tors, not just the return value of the
first one.

Implicit Diamonds
In the previous diamond example,

the Steerable interface is explicitly a
super-interface of both Driveable and
Sailable. What if the super-interface has
not been explicitly factored out,
though?

For example, in the original
PersonLike and EmployeeLike example,
what if each provided a foo() method,
returning a string. Not imaginative, but
never mind. Let’s construct our
employee and use an InvokeAllStrategy:

Employee employee = (Employee)

new DelegatorFactory(new

Class[]{Person.class, Employment.class},

Employee.class,

new

InvokeAllStrategy())

.getObject();

Now let us invoke foo():

employee.foo(); // what will happen?

Should the Person’s implementation
be called, that of Employment, or both?
Although you might wish that both

would be called (by virtue of our
installed strategy), the sad truth is that
only Person’s implementation would be
called. This is because the dynamic
proxy has no way of knowing which
interface to match foo() to, so it simply
matches it to the first interface listed.
(It’s a java.lang.reflect.Method that is
passed to the DelegatorFactory, not the
string literal “foo()”. Methods are asso-
ciated with a specific declaring
class/interface.) In terms of the
DelegatorFactory’s implementation,
this means the first superclass listed in
its constructor.

Note also that the compile time type
does not matter. Neither of the follow-
ing will change the outcome:

((PersonLike)employee).foo();

((EmployeeLike)employee).foo();

In fact, it would be possible to mod-
ify DelegatorFactory to make Invoke-
AllStrategy effective in this case, but
that would involve parsing on the
Method.getName() rather than the
method. However, this has deliberately
not been done. We’d rather you factored
out the super-interface and made the
diamond explicit. In the above exam-
ple, add a FooLike (or Fooable) inter-
face and make both PersonLike and
EmployLike extend from it.

Other Applications
The issue raised by diamonds

(implicit or otherwise) is that of how to
deal with more than one implementa-
tion of a given method within an inter-
face. However, it’s interesting to turn
this on its head.

In aircraft and other safety-critical
environments, it’s common to imple-
ment subsystems in triplicate. For
example, there may be three different
navigational systems, possibly with
each implemented by different subcon-
tractors. Each of these would be able to
respond to the request, “Where is the
location of the aircraft?”

Other systems within the aircraft
interact with the navigational subsys-
tem through a broker. This accepts the
request on behalf of the navigational
subsystem, and then forwards the
request onto each implementation.
Assuming there are no bugs in any of
those implementations, they should all
respond with the same data (within
some delta of acceptable variance).

If there is a bug in one of the imple-
mentations, it may produce a response
that differs wildly from the other two
implementations. In this case, the bro-
ker disregards that response completely

and uses the responses of the other
implementations that agree with each
other.

The design of DelegatorFactory and
its pluggable invocation strategies
make it easy to implement such a bro-
ker. Imagine a Calculator interface that
defines a single method add(int,
int):int. We can then have three imple-
mentations of this interface, as shown
in Figure 5.

The FastCalculator uses regular
integer arithmetic. The OneByOne-
Calculator rather long-windedly per-
forms its arithmetic by incrementing
the first operand one-by-one in a loop.
Both of these implementations are cor-
rect, just different. The final
BrokenCalculator is just that; it actually
performs a subtraction, not an addi-
tion.

The InvokeSafelyStrategy invocation
strategy requires at least three ances-
tors that implement each method
invoked. It will invoke the method on
all ancestors, and then look to see that
there is precisely one response that is
most popular. Here is how to create a
safe calculator that will ignore the
incorrect implementation within the
BrokenCalculator:

DelegatorFactory dfInvokeSafely =

new DelegatorFactory(

new Class[] {

BrokenCalculator.class,

OneByOneCalculator.class,

FastCalculator.class

},

Calculator.class,

new InvokeSafelyStrategy()

);

Calculator safeCalculator =

(Calculator)dfInvokeSafely.getObject();

assertEquals(7, safeCalculator.add(3,4));

Note that the InvokeSafelyStrategy
is not all that intelligent. It stores the
return values from each ancestor with-
in a HashSet, so it relies on an accurate
implementation of equals() and
hashCode(). If the actual return type
were a float (wrapped within a Float
object), a more sophisticated invoca-
tion strategy would most likely be
required. In general, this strategy will
work only with well-defined value
objects that can intrinsically deal with
any rounding and other such errors.

You could easily adapt or refine the
InvokeSafelyStrategy into further
strategies. For example:
• A parameterized version of

InvokeSafelyStrategy could be used to
deal with floats and other return types
that would have rounding issues.

62 October 2003 www.JavaDevelopersJournal.com

• A background strategy might per-
form each invocation within a sepa-
rate thread. Any invocation that had
not responded within a certain time-
out would be discarded.

• A high-performance system, on the
other hand, might use a strategy that
again uses a backgrounding strategy
but returns the result of the first one
to finish, killing off the rest.

• A logging strategy might perform
some logging and then forward the
invocation (typically to a single dele-
gate).

• A caching strategy would check its
cache with respect to the input
parameter, and only if the result is
unknown would it invoke the dele-
gate (caching the subsequent result).

• A listener/broadcast strategy could
represent a collection of listener
objects; notifying all listeners of an
event would require notifying only
the broadcaster, which would then
iterate over all listener objects as
required.

Moreover, there is nothing to pre-
vent multiple invocations from being
chained together, (that is, the
Decorator pattern). Alternatively, we
could imagine a composite strategy
(the Composite pattern) that combines
a set of strategies together. Either the
invocation chain (decorator) or the set
of leaf strategies (composite) could be
changed at runtime, meaning that we

can change the behavior and responsi-
bilities of the object dynamically. This
is a fundamentally different paradigm
from conventional Java with its static
typing. Normally, it’s the type/class of
the object that determines its behavior,
something that cannot be changed
once the object is instantiated. Here,
though, we have ended up configuring
the behavior of objects on an instance-
by-instance basis: so-called instance-
based programming. In effect, the
whole notion of type becomes much
less important.

There are echoes here too of aspect-
oriented programming. Most aspect-ori-
ented programming uses compile-time
techniques (the term used is “weaving”) to
add in behavior to classes. The classic
example of aspect-oriented programming
is to add logging within all method calls.
You can easily see, though, that these same
features can be incorporated dynamically
using invocation strategies; the decora-
tor/composite invocation strategies would
allow an arbitrary set of aspects to be
added to a class. The difference though is
that now the aspects are applied at run-
time (and hence can be changed without
recompile and redeployment).

Conclusion
The DelegatorFactory is simple to

use, supporting classic mix-in (orthogo-
nal) multiple-implementation inheri-
tance “out-of-the-box” and – with its
pluggable invocation strategy design –
allows diamond hierarchies to be easily
supported. Moreover, the design also
lends itself to other quite unrelated
problem spaces; for example, creating
safe systems was explored. Taken to its
logical conclusion, the approach sup-
ports both instance-based programming
and aspect-oriented programming.

Of course, what makes
DelegatorFactory work is Java’s support
for dynamic proxies, and that in turn
requires that the ancestor superclasses
implement interfaces. This approach
won’t work for class-based designs
(JDOM is an example that comes to
mind). But arguably class-based
designs should be used only for value
objects that should be final anyway.
Those situations where multiple inher-
itance is desired are more likely to
occur when working with reference
objects.

One particular case deliberately not
supported by DelegatorFactory is when
there is a so-called implicit diamond.
The solution though is to pull out the
methods that appear in both interfaces,
and move them into a new super-inter-

face. Then, make sure you use
InvokeAllStrategy rather than the
default InvokeFirstOnlyStrategy.

Of course, using a dynamic proxy
object will be slower than a hand-crafted
solution, principally because reflection is
used. However, the difference may not
be noticeable in practice. In recent
releases of Java, Sun has put much effort
in speeding up reflective invocation; as
of JDK 1.4.1, it may well be that regular
invocation is only twice as fast as reflec-
tive invocation (previously this figure
was something like 40 times faster).

Using DelegatorFactory
The DelegatorFactory utility class

and supporting classes described here
can be downloaded from www.sys-
con.com/java/sourcec.cfm, and are
compilable using Ant (v1.5.1 was used
to create the build file). A JUnit-based
test harness is also provided; JUnit
v3.8.1 is required. The motivating
examples in this article are based on
the JUnit tests, so they should be easy
enough to follow.

To run the tests with JUnit’s text-
based test runner, use:

ant test

Alternatively, you can use JUnit’s
test runner by running directly:

ant rebuild

java –classpath dist/halware-util-dynamic-

bin.jar;dist/halware-util-dynamic-bin-

test.jar

com.halware.util.dynamic.test.AllTests gui

(The GUI test runner is not the
default since JUnit’s classloaders do not
understand the Class-Path manifest
attribute.)

I hope you find DelegatorFactory
useful. It has been distributed under
the GNU Lesser Public License, so you
are free to embed it within your own
software as required.

Acknowledgments
The inspiration for this article came

from a session presented by Benedict
Heal at the Object Technology
Conference OT2002, run by the British
Computer Society and the IEE. See
www.ot2002.org/programme.html.
Thanks, Benedict, for your further
review comments on the draft of this
article.

The UML class diagrams were creat-
ed directly from the Java source code
using Together ControlCenter, see
www.borland.com.

Dan Haywood has
worked on numerous

software development
projects for more than

13 years. He’s an
independent

consultant, trainer,
and technical writer,

having previously been
a consultant for

Sybase Professional
Services and

Accenture. His books
include Better

Software Faster,
addressing the

effective use and
customization of
Together Control

Center, and the EJB
chapters for SAMS

Teach Yourself J2EE in
21 Days. Dan’s latest

interest also uses Java
reflection heavily,

namely Naked Objects
(www.

nakedobjects.org).

dan@
haywood-

associates.co.uk

DELEGATORFACTORY
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Figure 5 Three implementations of a Calculator

Figure 4 InvocationStrategies are pluggable

304,187 of the World’s Foremost IT Professionals304,187 of the World’s Foremost IT Professionals304,187 of the World’s Foremost IT Professionals304,187 of the World’s Foremost IT Professionals

For email information:
contact Frank at 845-731-3832
frank.cipolla@epostdirect.com

epostdirect.com 800-409-4443 fax845-620-9035

For postal information:
contact Kevin at 845-731-2684
kevin.collopy@edithroman.com

edithroman.com 800-223-2194 fax845-620-9035

304,187 of the World’s Foremost IT Professionals
DIRECT MAIL, EMAIL OR MULTI-CHANNEL

Target CTOs, CIOs and CXO-level IT professionals and developers
who subscribe to SYS-CON Media’s industry leading publications

Recommended for a variety of offers including Java, Internet, enterprise computing, e-business applications, training, software, hardware,
data back up and storage, business applications, subscriptions, financial services, high ticket gifts and much more.

Wireless Business &
Technology... The wireless
magazine for key corporate &

engineering managers, and other
executives who purchase

communications products/services

.NET Developer’s Journal…
The must read iTechnology

publication for Windows
developers & CXO management

professionals

WebLogic Developer’s
Journal…The official magazine

for BEA WebLogic application
server software developers, IT

management & users

Java Developer's Journal...
The leading publication aimed
specifically at corporate and
independent java development
professionals

PowerBuilder Developer’s
Journal…The only PowerBuilder

resource for corporate and
independent enterprise

client/server and
web developers

WebSphere Developer’s
Journal...The premier publication
for those who design, build,
customize, deploy, or administer
IBM’s WebSphere suite of Web
Services software

XML-Journal...The world's #1
leading XML resource for CEOs,
CTOs, technology solution

architects, product managers,
programmers and developers

Web Services Journal...The
only Web Services magazine for
CIOs, tech, marketing & product

managers, VARs/ISVs, enterprise/
app architects & developers

LinuxWorld Magazine...The
premier monthly resource of Linux

news for executives with key
buying influences

ColdFusion Developer's
Journal...The only publication
dedicated to ColdFusion web
development

NOW AVAILABLE!
The SYS-CON

Media Database
304,187 postal

addresses

NOW AVAILABLE!
The SYS-CON

Media Database
304,187 postal

addresses

64 October 2003 www.JavaDevelopersJournal.com

his month I’ll discuss the evolution of
the JCP, J2SE 1.5 or “Tiger”, Java
portlets, and a new JSR from Nokia and
Siemens.

JSR 215, aka JCP Version 2.6
The Java Community Process is the

only standards body with a version
number! Currently, we’re at 2.5 and
hope to soon be at 2.6. Where are we
now? About halfway between 2.5 and
2.6. Rule and regulation changes in the
JCP happen through the JSRs. JSR 913
modified the JSR ballot voting rules,
JSRs 99 and 171 led to JCP 2.5, and JSR
215 is creating JCP 2.6. This JSR just
completed the Community Review and
ballot. The Program Office together
with the Executive Committees will
now be working toward Public Review.
A few of the things the group will focus
on are clarifications around JSRs
assigned to both ECs, a draft trans-
parency plan for spec leads to use, and
ironing out the mandatory TCK
requirements. While the Community
Review period has passed, the draft is
still available on the Web site and you
can send in your thoughts and ideas.
Speaking of evolution, at the end of this
year the JCP will be five years old. The
Program Office will be at ApacheCon in
November to celebrate. Now, on to the
real work in the community!

A Tiger in Review
The three main Java platforms

(J2ME, J2SE, and J2EE) are all done
through the JCP. The coordination for

these main releases takes place through
so-called Umbrella JSRs. The actual API
work for a new version of J2SE or J2EE
does not happen in the Umbrella JSR.
Instead the Umbrella JSR references the
individual JSRs that specify new and
updated APIs. Many of the JSRs that
contribute to J2SE 1.5 or “Tiger” have
just completed their Community
Reviews. See JSR 176, the J2SE 1.5
Umbrella JSR, for a complete list of
component JSRs. I covered a few of
these JSRs in previous columns. Here
I’d like to mention JSRs 3, 13, 199, 204,
and 206. With “Tiger” the Java
Management Extension specification
becomes part of the J2SE distribution.
JSR 13 adds floating point arithmetic to
BigDecimal so that decimal numbers
can be used for general purpose arith-
metic without the need to convert to
and from other types. The Java
Compiler API enables a Java program to
invoke a Java language compiler pro-
grammatically. JSR 204 further
enhances the internationalization
capabilities of the Java platform by pro-
viding support for the Unicode 3.1
standard. Unicode 3.1 defines charac-
ters that cannot be described by single
16-bit code points. Finally, there is JSR
206, which is developing JAXP version
1.3, an API for processing XML.

The Java Portlet Specification
This JSR, number 168, is co-led by

IBM and Sun. The JSR resulted from a
simultaneous submission of two quite
similar JSRs individually presented by

both companies. At the urging of the
EC, IBM and Sun withdrew those indi-
vidual JSRs and submitted a combined
one, JSR 168. The JSR recently posted in
short succession two Proposed Final
Drafts, and it’s very likely that by the
time you read this column the JSR will
be on the Final Approval Ballot. This
specification builds on the servlet tech-
nology by defining the desktop
metaphor for the aggregation of servlets
and JSPs. It also covers security and per-
sonalization, and enables interoperabil-
ity between portlets and portals.

JSR 228
Nokia and Siemens recently final-

ized JSR 195, Information Module
Profile. This was quickly followed by the
submission of JSR 228 that defines
Information Module Profile – Next
Generation. The technology is aimed at
devices that want to support a MIDP
2.0 environment but don’t provide any
graphical display capabilities required
by MIDP 2.0. JSR 195 first opened this
market for Java-enabled devices, such
as modems, metering, and home elec-
tronics. This created a strong desire for
the advanced capabilities of MIDP 2.0.
JSR 228 will focus on the domain secu-
rity model, HTTPS and secure network-
ing, OTA provisioning, and push archi-
tecture. The spec leads aim to finish the
JSR in the late spring of 2004.

That’s it for this month. I am very
interested in your feedback. Please e-
mail me with your comments, ques-
tions, and suggestions.

Wily Launches Study on Java
Application Performance
(Brisbane, CA) – Wily Technology has
launched a comprehensive survey of
J2EE application performance. The
2003 Wily Benchmark Survey of J2EE
Application Performance and
Availability will measure industry-wide
user experiences with J2EE application
deployment and management across a
spectrum of enterprise and public sec-
tor organizations worldwide.

The survey report will be published
in November 2003. Participation in the

survey is open to qualified respondents
active in the design, development,
deployment, and management of J2EE
applications within an organization.
www.wilytech.com/2003/chartingJ2EE

Sun Shrinks 225 Java Products
to Six Systems
(San Francisco) – Sun Microsystems has
launched its third quarterly set of coordi-
nated product releases, combining 225
products into just six systems.

As part of its push toward reducing
cost and complexity, Sun will in the

future deliver systems around six Java-
branded software products designed to
integrate all needed applications and
services on server, desktop, development,
and operational environments. A new
simplified charging approach, priced per
employee, was also introduced.

The six Sun systems are the Java
Enterprise System, the Java Desktop
System, Java Enterprise Studio, and N1,
and for future deployment – the Sun
Java Mobility System and Sun Java Card
System.
www.sun.com

From Within the
Java Community Process Program
‘Tigers’ to MIDPs

T

JSR WATCH

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Onno Kluyt

Onno Kluyt is the
director of the

JCP Program
Management Office,

Sun Microsystems.

onno@jcp,org

Industry
News

65October 2003www.JavaDevelopersJournal.com

Life Outside the Sphere

IBM’s WebSphere Device Developer

(WSDD) is a sophisticated development

platform for WebSphere Micro Environment

(WME, also known as J9). Debugging, profil-

ing, packaging – whatever you want, WSDD

can do it all. Based on Eclipse, it’s just right

for those of us who like to work with

Eclipse. The problems start if you prefer to

use some other IDE or you believe in auto-

mated, continuous integration. This article

will show you how to master using WME

without WSDD.

Managing J2EE Systems
with JMX and JUnit

The promise of J2EE was to build more

robust, scalable, and secure enterprise sys-

tems quickly and easily. J2EE is supposed to

take the complexity out of building power-

ful distributed systems. But as with the J2EE

spec, these systems usually suffer through

management only as an afterthought. This

article will show you how to use the open

source JMX4ODP framework to combine the

ease of JUnit tests and the extensible man-

agement of JMX beans.

WebLogic JRockit 8.1 by
BEA Systems

The JRockit engineers made two

assumptions when they first designed

JRockit. First, server VMs run for a long

time and, second, memory is cheap and

plentiful. This motto still rings true in BEA’s

offering of the 8.1 (J2SE 1.4.1_03) version of

this product. And, unlike the more familiar

JVMs, this VM comes with a face.

FPO

Advertiser Index

GGeenneerraall CCoonnddiittiioonnss:: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of
the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to
change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the con-
tent of their advertisements printed in JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. Advertisements are to be printed at the discre-
tion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred posi-
tions” described in the rate table. Cancellations and changes to advertisements must be made in writing before
the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

Altova www.altova.com 19

Bea dev2dev bea.com/dev2devdays2003 1-925-287-5156 29

Borland Software Corporation go.borland.com/j6 11

Borland Conference 2003 connect.borland.com/borcon03 37

Canoo Engineering AG www.canoo.com/ulc/ 41 61 228 9444 7

COMDEX Las Vegas 2003 COMDEX.com 43

Computer Associates ca.com/lifecycle 4

Crystal Decisions www.crystaldecisions.com/lbl/ 1-800-877-2340 9

Edith Roman www.edithroman.com 800 223 2194 63

GreenPoint, Inc. www.webcharts3d.com/demo 47

Extentech www.extentech.com/jdj 415-759-5292 35

IBM Rational ibm.com/rational/seamless 21

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 33

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

INT, inc. www.int.com 713-975-7434 48

iSavix http://isavix.net 703-689-3190 39

LinuxWorld Magazine www.linuxworld.com 888 303 5282 57

MX Developer's Journal www.sys-con.com/mx/subscription.cfm 888 303 5282 55

Northwoods Software Corp. www.nwoods.com/go 800-434-9820 44

Oak Grove Systems www.oakgrovesystems.com/jdj 818-440-1234 31

Parasoft Corporation www.parasoft.com/jdj10 888-305-0041 Cover II

Parasoft Corporation www.parasoft.com/jdj10 888-305-0041 23

QUALCOMM Incorporated www.qualcomm.com/brew/jdj 51

Quest Software, Inc. http://java.quest.com/performasure/jdj 17

Quest Software, Inc. http://java.quest.com/jclass/jdj 27

Quest Software, Inc. http://java.quest.com/jprobe/jdj Cover IV

ReportingEngines www.reportingengines.com/info/trial3.jsp 888-884-8665 28

SAP www.sap.com/netweaver 1-800-880-1727 13

Software FX www.softwarefx.com 800-392-4278 Cover III

SYS-CON Events www.sys-con.com/edgeeast2004 201 802 3069 45

SYS-CON Media www.sys-con.com/2001/sub.cfm 888 303 5282 53

WebAppCabaret www.webappcabaret.com/jdj.jsp 25

Zero G www.zerog.com 415-512-7771 3

Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

Next Month
Have you heard? Generics will be in the next release of the Java SDK (code
named Tiger aka JDK 1.5). You might be wondering “What is a generic?” or
“Why should I care?” or even “Cool! How do I use them?” No matter what
your level of interest, this article will introduce generic coding, explain how
they are used and what their advantages are, and discuss how they will impact
your work.

Using Java Generics

66 October 2003 www.JavaDevelopersJournal.com

t JavaOne, Jonathan Schwartz, executive
vice president of Sun’s Software Group,
outlined his mission to increase the
number of Java developers from 3 mil-
lion to 10 million. The hope is to attract
these extra seven million from the
legions of Visual Basic (VB) developers.
Visual Basic’s strength comes from a tool
experience that is inseparable from the
language and, in order to capture their
mind share, Java needs the killer IDE.

Early Java programming books were
often bundled with a copy of Visual
Café, allowing readers to concentrate
on learning the language syntax instead
of esoteric JDK command syntax. While
some programmers pride themselves
on writing macros to customize their
favorite text editors, integrated devel-
opment environments (IDEs) offer the
easy life of code assist, incremental
compilation, and integrated debuggers.

Since Visual Café, a number of great
IDEs have been created. JBuilder, IntelliJ,
and Eclipse lead the 2003 JDJ Readers’
Choice Awards with TogetherJ, Oracle9i
Developer, and Sun ONE all equally wor-
thy of pole positions. The irony is that
having so many good development tools
is a weakness, not a strength, when it
comes to tackling Microsoft.

The current Java IDE landscape
makes extensibility APIs either con-
strained to the lowest common denomi-
nator or proprietary to each vendor.

JavaBeans and JavaServer Faces (JSF) are
examples of the former because, while
components can be good citizens for
how a tool will use them, they cannot
exercise sufficient control over the envi-
ronment hosting them. To truly leverage
a tool requires knowledge of its object
model for representing artifacts, the life-
cycle API for how data is persisted, and
the control of event notification
between viewers. If the IDE surfaces
these internals to the component, a
much richer edit time experience can be
created. The case in point is Microsoft
Design-Time Control (DTC), which
allows customization of Web page com-
ponents through in-place ActiveX con-
trols that run within the source editor.
Java’s answer to DTC is JSF. Without
being able to surface a satisfactory
mechanism to plug into the IDE’s view-
ers, the source-editing experience relies
on using the JSF component as you
would any other JavaServer Page (JSP)
tag library or JavaBean. This is not going
to lure the VB crowd who want in-place
preferences dialogs for their component
embedded directly in the source page.

The most successful challenge to
Microsoft tools in the Java space so far is
to adopt a proprietary approach as used
by JBuilder, IntelliJ, or Eclipse. These sur-
face the APIs that tool vendors and com-
ponent builders need to leverage the edit
time experience. However, their bespoke

interfaces cause fragmentation in the tools
space, and while JSR 198 is a well-inten-
tioned attempt to resolve this problem, it’s
too little too late and is fated to become
the lowest common denominator.

Any successful extension API needs
to be more than skin deep, and what
motivation do the tools vendors have to
come together and agree on a common
object model or life-cycle API? It is
IBM’s doomed AD cycle all over again.
If a compromise API is reached, the IDE
vendors will do half-hearted shoe horn-
ing of this into their existing tool, while
still retaining their internal extension
APIs for serious platform development.
The issue is further complicated by the
inability of Swing and SWT to interop-
erate, and if the GUI toolkit can’t be
agreed upon, there is surely little hope
that the internals can converge.

The only solution I see is for one of
the existing IDEs to become the de facto
tool for Java. The benefit of having only
one tool is that people can program to its
extension API, have access to the inter-
nals of its object model and construction
and, in an ideal scenario, the tool would
be offered with JDK downloads to round
off the whole Java “out of the box” expe-
rience. This way when the seven million
newcomers we are hoping to attract first
taste Java, they feel at home with a rich
set of design-time tools fully integrated
with the language.

One IDE to
Rule Them All

A

FROM THE INSIDE

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Ja
va

 D
ud

es

Henry Roswell is a
veteran consultant
who would like to
think he’s seen it

all, but is constantly
amazed by new

events everyday.

henry@sys-con.com

Henry Roswell

For more info and a free eval, visit:

http://java.quest.com/jprobe/jdj

JProbe®

Find the cause of J2EE code performance, memory

and threading problems faster than ever before with

JProbe 5.0. New investigative features for finding

memory problems combined with dramatic

performance improvements mean even quicker

resolution of problems in your application, servlet,

JSP and EJB code.

JProbe Suite

JProbe Profiler

JProbe Memory Debugger

JProbe Threadalyzer

JProbe Coverage

Introducing JProbe® 5.0
…now smarter and faster than ever

© 2003 Quest Software, Inc. Quest, Sitraka, PerformaSure and JProbe are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. All other products are trademarks or registered trademarks of their respective companies.

